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A Program Design Visualization System

ITARU IcHIKAWA*, ETsuo ONo* and TOMOHARU MOHRI*

This paper discusses a program design visualization system, describing the background and explaining pro-
gram design visualization procedures and the basic system configuration. It focuses on how to correlate a pro-
gram with graphics, on tracer embedding as the system’s basic architecture, and on the structure of graphic ob-
jects structure generated internally in the system. It also provides an example of visualization done with an ex-
perimental system generated in PSI, with ESP used as the programming language.

1. Introduction

How software operates is vital to supporting software
reuse and verifying design and program consistency. As
workstation techniques advance, the use of graphic in-
formation is gradually replacing that of character infor-
mation in effectively promoting the understanding of
program structure and operation [1].

The visual programming environment is one ap-
proach to promoting such understanding; programm-
ing is done by supplying graphic information through
graphic programming or specification description
languages. PegaSys [2], for example, uses descriptions
in graphics to generate formatted program design
sheets. Other approaches include visual debugging
utilities such as VIPS [3] and PROEDIT2 [4], which
display program operation by using graphics, with the
degree of abstraction at the programming language
level.

Algorithm animation, a method close to our ap-
proach, makes processing algorithms understandable
by using graphics to display program operation. Balsa
[5], for example, displays the processing patterns of
different sorting algorithms, enabling the principles of
operation and efficiency to be compared and under-
stood.

To support software reuse and verify design and pro-
gram consistency, our program design visualization
system visualizes program execution by using graphics
that have the degree of abstraction used in design. The
degree of abstraction of these graphics is equivalent to
that of the graphics used by PegaSys, and higher than
that of those used by VIPS and PROEDIT?2, enabling
users to understand program operation more easily.
Our system supports simultaneous visualization from
different views, further promoting understanding.

This is a translation of the paper that appeared originally in
Japanese in Transactions of IPSJ, Vol. 31, No. 12 (1990), 1801-1811.
*Fujitsu Limited.

Journal of Information Processing, Vol. 15, No. 3, 1992

The use of graphics in the design stage allows, the
system to confirm program and design consistency. It
can also support design analysis. We eventually hope to
support program reuse by using visualization tech-
niques for understanding the operation of individual
program parts.

2. Program Design Visualization Methodology

2.1 Environment

In our study, we assumed the environment shown in
Fig. 1. Graphics are used to produce a chart during the
specification description and design stages of a pro-
gram’s generation. Correspondence is provided be-
tween the program and the original chart. A program’s
operation is visualized by using design stage graphics
and correspondence.

The following are input to the system:

1. Object program

2. Chart definition

3. Graphics and program correspondence

The output of the system is an animation display (Fig.
2).

If the program does not operate as expected, the
cause is an important consideration—particularly if it is
the program! As an experiment, we embedded a bug in
a normally operating program. The result confirmed the
display to be abnormal. We made the following assump-
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Fig. 1 Environment of program design visualization.
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Fig. 2 Program design visualization input and output.

tion about the foregoing:
Assumption:
The program design visualization system operates nor-
mally if a correct input is given, but the validity of cor-
respondence is not ensured.

We assume that the validity of the correspondence
has been verified before an input is given to the system.

2.2 Correspondence

Correspondence associates a program with graphics.
Here, correspondence is divided into static and
dynamic. The correspondence between the program
and graphics is defined by visualization instructions,
which fall into two types: visualization commands,
which establish correspondence with operations, and
mapping definitions, which establish correspondence
with elements.

A mapping definition defines the following two ex-
pressions (p and g) in the format p—g:

- p: Expression representing an element in the program
- ¢g: Expression representing a graphic element

where p is represented as an expression in the program,
and g is indicated by a label in the chart. If graphics
with the same label appear in more than one chart, the
label of the relevant chart is added to indicate the chart
to which the graphic belongs.

The dynamic correspondence defines the cor-
respondence between the operations of the graphics on
the chart and execution in the program. For the execu-
tion string in the program and the operation string on
the chart, we defined a mapping relationship for each
substring.

A visualization command defines the correspondence
between execution string S in the program and visualiza-
tion operation A in the graphic structure, by Hoar’s
axiom P{S}Q, A, where P and Q are statements (condi-
tional expressions) related to the program status to be
satisfied immediately before (P) and after (Q) S is ex-
ecuted. The meaning is interpreted as follows: A is per-
formed if P is satisfied before S is executed and Q is
satisfied after S is executed.

Execution string S is defined as follows:

1. Si=*xSj: Sj is executed after Si is executed.
2. Si{=Sjx): §j is executed while Si is being executed.
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A is a description, made by using graphic symbols, of
the change in graphic elements in the chart. In A4,
however, the symbols used in programs that appear in
P, S, and Q can be used as they are. In this case, we
assume that these symbols are mapped in graphics by
the mapping definition and then interpreted.

2.3 Program Design Visualization Architecture

Program design visualization displays program opera-
tion as animation on a chart. In another approach, with
simulation, the program is not actually executed, and
only animation is generated on the chart. In our ap-
proach, the program is actually executed, execution is
extracted and analyzed, and animation is displayed on
the chart.

To visualize program execution, in detail and in real
time, we face the following problems:

1. Can a display be visualized simultaneously with ac-
tual execution?

2. Can the user understand such a display?

The purpose of program design visualization is to sup-
port the understanding of program operation. This
means that a visualized result should be displayed at a
speed at which the user can understand it. It becomes
necessary to establish some sort of viable cor-
respondence between computer execution speed and in
display speed.

There are two ways of doing this:

1. Execute the program, detect execution informa-
tion, and record the time series of this information as a
log in the secondary storage. Then, extend the time
based on this log independently of execution to allow
visualization of program operation.

2. Execute the program, synchronizing it with the
visualized screen, and detect execution information.
Then, extend the time based on this information to
allow visualization of program operation.

In the visualization of program logic, the non-
uniformity of the time extension is not a serious prob-
lem. However, in the visualization of program charac-
teristics, such as synchronization and efficiency, the
time extension must be uniform. It is also necessary that
visualization should not affect program execution. In
this paper, we adopt the second of the above methods,
with the objective of visualizing logic operation.

To visualize program execution, three basic architec-
tures are used:

1. Set the execution environment, for example, the in-
terpreter and simulator, for the object language, and
then execute the program, obtain execution informa-
tion, and analyze and visualize the information. This
enables detailed information to be obtained, but an ex-
ecution environment must be prepared for extracting ex-
ecution information.

2. Directly embed parts of the program for visualizing
the program in the object program. Visualization is
done directly, on the basis of program execution.
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Unlike in other methods, execution information need
not be analyzed. However, this architecture cannot
handle complicated execution.

3. The third architecture is tracer embedding,
somewhere in between the methods above. To collect
execution information on the object program, tracers
are embedded as software probes in the program. The
program is then executed, execution information is ob-
tained from the tracers, and the information is analyzed
and visualized. The advantage of this is that the entire
execution environment need not be prepared and
visualization can be done easily. The disadvantage is
that the information obtained may not be very detailed
in comparison with that obtained by the first architec-
ture, for example.

We adopted tracer embedding as the basic architec-
ture for visualization, since visualization can be
provided easily and complicated program operations
can be handled.

Figure 3 outlines the program design visualization
system using tracer embedding. The following proc-
essing is done:

- Tracers for collecting execution information in the ob-
ject program are embedded.

- Execution is detected.

- Operation is analyzed by using visualization instruc-
tions.

- Operation is displayed as animation on a screen.

To detect execution strings of the object program, the

transition of control is observed at several points in the

program. Therefore, the program and analysis and

display are synchronized and operate as coroutines.

2.4 Chart Structure

A chart is hierarchically composed of units called
elementary figures. The definitions of elementary
figures are stored in the elementary figure dictionary.
The definitions of charts are stored in the chart library.
These definitions define the shapes, operations, and con-
structions of each figure.

A chart treated as a partial figure can be used for
chart definition; such a chart is called a partial chart, as
opposed to an entire chart.

For the elementary figure dictionary, the system pro-
vides abstract data types generally used for software
design, such as stack, list, and queue, as basic elements.

In the chart library, a chart references elementary
figures and other charts, that is, partial charts, as parts
of itself, and is defined unrecursively. The relationship
between elementary figures and charts made by the
above reference relationship is called the conceptual
structure. The chart at the top of this conceptual struc-
ture is called the top-level chart.

Each chart corresponds to a specific view. A view is
assumed to represent the viewpoint from which the ob-
ject program is viewed. For example, the views corre-
sponding to the following charts differ according to the
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viewpoint:

- When the object program is viewed from the data
flow.

- When the object program is viewed from the control
flow.

In this system, charts from more than one viewpoint

can be set for the program. Multiple or multidimen-

sional views can be set for the program corresponding

to these charts. The views also differ according to the

difference in the degree of detail and abstraction in the

chart. This system enables multiple charts to be set for

the program. Hierarchical views can be set for the pro-

gram corresponding to these charts.

3. Program Design Visualization System

It is difficult to understand a logic program’s execu-
tion merely by looking at the program, unlike descrip-
tions in conventional programming languages. We de-
veloped a program design visualization system [7] for
the object-oriented logic programming language ESP
[6]. Figure 4 outlines the system’s basic configuration.

The system consists of:

- Preprocessor

- Program operation analysis

- Internal graphic object structure

- Program operation display

The visualization instructions, elementary figure
dictionary, and chart library explained in the previous
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section are given to the program as visualization
knowledge.

3.1 Tracer Embedding

The visualization system does the following:

- The program operation analysis detects and analyzes
the execution of the program processed by the
preprocessor.

- It composes a visualization for the internal graphic ob-
ject structure that models the displayed figures.

- The program operation display shows the program
operation in animated form on the screen.

The preprocessor embeds the tracers required to
detect operation strings defined by visualization com-
mands. Information on the tracers embedded by the
preprocessor is given to the program operation analysis.

The program operation analysis detects execution
strings of the object program. When an execution string
defined by a visualization command is executed, the
operation analysis section composes the visualization
for the internal graphic object structure.

A visualization command defines the correspondence
between the execution string S in the program and
visualization operation A in the graphic structure, in
the format P{S}Q, A. The preprocessor embeds the
tracers required to obtain execution information on P,
S, and Q. The program operation analysis analyzes ex-
ecution information from the tracers. When execution
string S is obtained, it evaluates P and Q at the beginn-
ing and end of S under that execution string. If both P
and Q are satisfied, it generates a visualization opera-
tion from A.

A mapping definition defines the correspondence be-
tween program element p and graphic element g in the
format p—g. Using this definition, the system maps the
program element obtained by analysis onto the graphic
element and obtains the visualization &’ shown in the
figure.

For the preprocessor to embed tracers, string S of the
visualization command defining the execution string is
analyzed, and all candidate points for embedding are
listed. Then, the number of embedded tracers is
minimized by deleting unnecessary points from the pro-
gram control structure or by merging tracers, so that ex-
ecution can be detected efficiently. After that, tracers
are embedded.

The above processing is explained with reference to
the example in Fig. 5. (a) shows the object program.
Figure 5(b) shows a visualization command for the pro-
gram. Its meaning is as follows: If g(X) is satisfied im-
mediately after r(X') is performed during execution of
p(X), a(X) is executed.

The candidate points for embedding tracers are as
follows:

1. For all predicates and methods that occur in S:

1) Immediately before calling

2) Immediately after calling
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Fig. 5 Example of visualization command.
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Fig. 6 Candidate positions for embedding tracers.

2. For the body of each clause that defines the
predicates and methods:

1) At the beginning of the body

2) At the end of the body
3. If there is a CUT “‘!” in the body:

1) Immediately after CUT
Tracers need not be embedded at all candidate points.

The candidate points for CUTs are provided for proc-
essing Backtrack, which is a control specific to logic pro-
grams. If Backtrack occurs, the screen must be restored
to the previous state. Each tracer can report an event
for execution control (Backtrack occurrence). The pro-
gram operation analysis has a status history that
enables the screen to be restored. When Backtrack
passes through a CUT, the tracers that passed between
the beginning of the body and the CUT cannot report
Backtrack occurrence to the program operation
analysis. In this case, the tracer immediately after the
CUT is substituted.

Tracers are embedded in each candidate point accord-
ing to the visualization command shown in Fig. 5. An
explanation is given with reference to Fig. 6. p(X') is ex-
ecuted between the paired tracers (1) and (2), and (3)
and (4). r(X) ends at each of the tracers (5) to (8). If
p () is executed, g(¢) is evaluated when any of (5) to (8)
that becomes r(¢) is pased between (1) and (2) and be-
tween (3) and (4). If g(¢) is satisfied, a(¢) needs to be
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issued. The combination of candidate points is in-
dicated for each visualization command, and unused
candidate points are excluded.

Only the calling of r(f(Y)) in the first clause can ex-
ecute r(X) during p(X) execution. It is sufficient to
detect it at the tracer of (5). As stated above, the pro-
gram control structure is analyzed by forecasting an
and-or tree, and the combinations of the candidate
points that cannot occur are excluded. The values to be
picked up at each candidate point are also set.

The definitions of each automaton (how transition is
made by each tracer) are generated according to the
combinations of candidate points for embedding.
Automatons are explained in the next section. Embed-
ding is optimized by optimizing these automatons.

Finally, embedding is optimized by moving or merg-
ing tracers within the range in which no problem
occurs, in the clause. Optimization is mechanical, but
optimization in its broadest aspect is not possible. Any
additional optimization must be done manually. This is
a problem we hope to resolve in future.

3.2 Program Operation Analysis

When control passes a tracer embedded by preproc-
essing, the tracer sends a message indicating that con-
trol has passed it to the program operation analysis,
together with the value of the specified variable at that
time. The program operation analysis disconnects this
message so that control and the variable value are not in-
fluenced by analysis processing.

The program operation analysis then analyzes
message information together with its history,
generating an automaton for each visualization com-
mand, and conducts distributed management for the
histories.

The status of the automaton corresponding to the
visualization command P{S }Q; A changes when pass-
ing is reported from the tracer related to S. This
automaton reaches a final state when the tracer corre-
sponding to the end of S is passed. When each
automaton reaches its final state, it evaluates P and Q.
If both P and Q are satisfied, it generates a visualization
operation a from A.

These transitions are made by passing backward with
Backtrack, as well as by passing control forward. For
example, if an automaton that has changed to some
state is informed that a tracer has been passed with
Backtrack, this automaton restores the history by chang-
ing to the original state.

By doing repetition or recurrence with program
control, more than one partial execution string that
matches string S of a visualization command occurs
(e.g., s1,s2, ..., sn). Multiple activation, in which str-
ings overlap, occurs frequently. Enabling sj to be handl-
ed before the preceding si ends becomes complicated if
only one automaton is generated for that visualization
command.
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The system copes with multiple activation as follows:
- It defines an automaton class for each visualization
command.

-For each of sl, s2,..., sn, it generates an
automaton of the instance when the first tracer is
passed.

- Program operation analysis distributes information
from the tracers to the corresponding automatons, ac-
cording to the status of each automaton.

Distributing information to several automatons makes

each definition simpler than when only one automaton

is used. -

Visualization a generated by the program operation
analysis includes program elements that must be map-
ped onto graphic elements by using the mapping defini-
tion. The following actions are also required:

- Obtain the graphic object (in the internal graphic ob-
ject structure explained in the next section) to which
this visualization is to be sent as a message.

- Send the visualization to the graphic object, using the
exchanger in Fig. 7, and distribute maps and messages
by using the mapping definition and internal mapping
table.

3.3 Internal Graphic Object Structure

Our system supports multidimensional and hierar-
chical views of the conceptual structure consisting of
charts. On the visualized screen, the system displays the
figures corresponding to each view in multiple windows
in animated form through a display model called the in-
ternal graphic object structure.

The elements of this structure are active objects of
graphics mutually linked in a tree structure. Elements
are generated from definitions in the elementary figure
dictionary and chart library. The chart of elements at
the top of the structure to be displayed is selected dur-
ing initialization when the system is activated. The
selected chart automatically and regressively generates a
graphic object in the corresponding internal graphic ob-
ject structure.

The graphic object corresponding to the chart
receives graphic information from a low-order object.
It then constructs graphic information from the struc-
ture definition defined for it, and sends this to a high-
order object (Fig. 8).
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The graphic object corresponding to the chart can be
switched so that it behaves like an elementary figure,
generates graphic information from the definition of
the shape defined for it, and sends information to its
high-order object. For a chart on the screen, figures in
the partial chart can be constructed and analyzed dur-
ing the above switching.

The graphic object corresponding to the chart can
also display figures constructed for each view in
windows by using the animator, which is connected to
by the distributer. If the animator displaying a high-
order chart is made to display a low-order chart by
switching with the distributer (Figs. 9(a) and 9(b)), a
zoom-in is made to the low-order level.

When an animator is generated, a corresponding
chart is set up and a new window is opened (Fig. 9(c)),
and another window is zoomed. Detailed information
can be viewed by zooming while switching with the
distributer.

In the chart definition, drawings are defined
unregressively, but the same drawings are shared by
multiple charts. The following technique is used to
make view switching and drawing analysis and composi-
tion easier:

- In internal drawing construction, each shared struc-
ture has a copied structure.

- Visualization messages for objects are copied and
distributed to copied objects by the exchanger.
Visualization is sent to a leaf of internal drawing con-
struction, interpreted, and transferred to the root.
The animator displays animations in windows. It can

detect when a drawing has been picked up on the screen

and feed it back so that zoom switching and drawing

analysis and composition can be done by selecting a

drawing on the display screen.

Displaying muitiple windows by zoom switching is
effective in helping users understand program opera-
tion, but it complicates screen display. Therefore, it is
done only when the user needs it. Whether a window is
displayed depends on the generation or erasure of the
window. The animator is also generated or erased
simultaneously.
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Fig. 9 View switching with the distributer.

If frequent requests are made by a user for a window
to be displayed and erased, the overhead become a con-
sideration. The system reduces this overhead as follows:
Once a window or animator has been generated, the
window is no longer displayed when nondisplay is re-
quested, but the animator and the window are saved.
If display is requested again, the corresponding window
is displayed, so a new window need not be generated.

4. Prototype and Experiment

The system prototype we developed is used for pro-
grams in the object-oriented logic programming
language ESP on a PSI workstation, which we used for
an experiment on visualization. The system is written in
ESP, and the size of the source program is about 76 K
bytes.

The KL1 software simulator [8] for parallel logic pro-
gramming language execution was used as the object. In
the experiment, we used charts actually intended for
design. The size of the source program is about 18 K
bytes. It requires 28 visualization instructions and
displays 11 charts. There are 69 embedded tracers.

Figure 10 shows a part of the execution example.
(@) The chart of the highest level module configura-
tion for the KL1 software simulator is displayed immedi-
ately after activation. In this chart, nine processor
elements (PEs) are connected to one network manager
in both directions.

(b) Charts of the internal configuration of some proc-
essors are displayed in separate windows. Each proces-
sor element consists of a scheduler and a solver. Each
scheduler is connected to the corresponding solver by a
queue. Data are queued between the scheduler and
solver. An abbreviated display (. . .) is used when the
amount of data is large.

() The queue for which display is abbreviated is zoom-
ed, and its contents are displayed. Because there is no
mapping definition to distinguish data, the same draw-
ing is used in the display. However, there is a definition
to distinguish communicated data, and therefore
different drawings appear in the overall configuration
chart.

(d) Charts of the internal processor configuration are
displayed in the overall configuration chart, not in
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separate windows. To make the display easier to unders-
tand, the display scale and range of the chart are chang-
ed and magnified.

(e) A processing status chart is displayed for Fig. 10(c),
indicating the following hierarchy of processing
modules:

- PE#1 to PE#9 and the network manager (NM) under

KL1, and

- Individual PEs with schedulers and solvers.
The module currently executed is displayed in reverse
video. The entire configuration and internal processor
configuration are displayed from the viewpoint of the
data flow. The processing status is indicated from the
viewpoint of the control flow.

Our experiment confirmed that the method described
in this paper enabled program operations to be cor-
related with operations on charts using visualization in-
structions, even for a practical-scale program.

It also confirmed that visualization of program execu-
tion on charts corresponding to multidimensional and
hierarchical views made program operation easier to
understand.

§S. Conclusion
This paper described a system that uses tracer embed-

ding as the basic architecture for program design
visualization.

An experimental system that visualized the opera-
tions and structure of an ESP program confirmed that
program design visualization and the support of
multidimensional and hierarchical views were useful in
helping users to understand program operation.

Once the validity of the visualization system and
visualization instructions has been confirmed, the
system can be used to detect errors; that is, an abnormal
display indicates an abnormality in the object program.
Currently the validity of visualization instructions must
be confirmed manually. We assume that the informa-
tion displayed by visualization instructions is sufficient
to help users understand program operation, even
though it does not include all the operations of the ob-
ject system.

In future, we intend to accomplish the following:

- Automatic generation of valid visualization instruc-
tions in linkage with a program design system

- Extension of the object language to a parallel proc-
essing language.
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