Translation from Transactions of IPSJ

A Multiway Merge Sorter for
Sorting of Large Databases

TeTsus1 Sato*, HipEAKI TAKEDA* and NoBuo Tsupa*

A multiway merge algorithm by using specialized hardware is proposed for sorting a large number of records.
By adopting a sorting array that compares k records in parallel and a data-driven control technique that selects
k strings for merging, the algorithm performs merge processing for a large number of k-way whose speed is in-
dependent of the merge ways. A large number of records can be sorted by iteration of the k-way merge opera-
tions. The number of iterations is substantially reduced by increasing the number of merge ways. A compact
hardware sorter can be achieved to satisfy both speed and capacity respectively since the sorting array and the
working storage can be implemented independently. The database processor RINDA applies the multiway
merge sorter for accelerating sorts and joins. The configuration and performance of the sorter are also dis-

cussed.

1. Introduction

Sorting is a fundamental operation in non-numeric
computational areas. A wide variety of software
algorithms have been proposed [1] to perform sorting in
addition various application domains have been clearly
mapped out. In current relational database operations,
the number of sorting records varies tremendously ac-
cording to the application and there is an increasing de-
mand for the capability to sort more than a million
records. Moreover, sortings must also efficiently accom-
modate records of varying length from very short
integers to long character strings. Meanwhile, applica-
tion-specific hardware can easily be fabricated with the
dramatic advances in VLSI technologies in recent years.

This paper proposes a multiway merge algorithm that
can be applied to implement a compact, high-speed
sorter. The sorter is specifically conceived for applica-
tion to relational database processing where a high
degree of flexibility is required in terms of number and
length of records. Many kinds of sorters have been pro-
posed to increase sorting speed by using hardware
parallelism and pipeline processing. However, such
schemes involve increasing the hardware volume as the
number of records increase such that O(log, N) [2-4] or
O(N) [5, 6], where N is the number of records to be
sorted. Even in the case of a pipeline merge sorter [4],
which is typical of the O(log; N) approach and gener-
ally involves less hardware, as many as 20 merging cir-

This is a translation of the paper that appeared originally in
Japanese in Transactions of IPSJ, Vol. 31, No. 11 (1990), pp. 1653~
1660.

*NTT Communications and Information Processing Laboratories,
Base Systems Architecture Laboratory.

Journal of Information Processing, Vol. 15, No. 3, 1992

cuits are required to sort a million records. The circuits
are complicated because each one has a different
amount of working storage and extra hardware is re-
quired to expand the limitation of record numbers and
to handle various length records [7].

The newly devised merge sorter consists of a working
storage where the records are stored as the strings and a
sorting array which is a one-dimensional array for
parallel comparison. Applying a data-driven string-
selection technique for selecting the strings to be
merged in the working storage, perfect-successive
multiway merging is achieved independent of the
number of merging ways. Through the cascade iteration
of multiway merge processing, a large number of
records can be sorted. The number of iterations can be
decreased with increases in the number of merge ways.

The maximum number of sorting records is deter-
mined by the capacity of the working storage, and is not
affected by the configuration of the comparator and the
controller. Because the number of sorting records
depends on the capacity of the working storage and the
length of the records, a larger number of shorter
records can be sorted. The sorting array which takes up
most of the area of the sorter board is particularly well
suited to implementation in VLSIs because many sor-
ting elements can be integrated together without increas-
ing the pin-count of the VLSI chip. The working
storage is also suitable for compact implementation
because it can be integrated in a single area with large
capacity dynamic-RAM chips.

The multiway merge algorithm and its hardware con-
figuration are described in Section 2. Section 3 covers
technologies involved in devising the compact sorter
and describes the multistage merge algorithm, the string




A Multiway Merge Sorter for Sorting of Large Databases

storing method in the working storage, and the struc-
ture of the sorting array that performs the parallel com-
parisons. The feasibility and performance evaluation of
a prototype sorter are discussed in Section 4. An exam-
ple application to the relational database machine
RINDA is also described.

2. Multiway Merge Algorithm

Sort operations in a relational database are perform-
ed on the results of selections and restrictions with
respect to a database that is stored in a disk. Thus, it’s
impossible to know in advance how many records are to
be sorted. It may also be necessary to sort a huge
number of records, depending on the application. It is
thus difficult to optimize the number of merge circuit
stages in the case of conventional sorters [2] where the
maximum number of sorting records is dependent on
the number of merge circuit stages.

By separating the record comparator from the record
storage circuit, however, the authors have developed a
multiway merge algorithm that satisfies two indepen-
dent requirements at the same time [8] — namely, the
maximum number of sorting records and sort speed.
The rest of this section provides a detailed description
of the hardware configuration and algorithm that per-
form the multiway merge operations.

2.1 Hardware Configuration

The basic structure of the sorter is shown in Fig. 1.
As can be seen in the figure, it consists of a linear sor-
ting array that performs the parallel comparisons on the
records, a working storage to hold the records, and a
merge controller. The sorting array is configured as a
one-dimensional array structure consisting of sorting
elements in which two records are compared to deter-
mine which is larger (smaller). A major departure from
conventional pipeline merge sorters {4, 7] is that the cen-
tralized working storage is implemented in a small area
circuit board using large-capacity dynamic-RAM chips.
The k-way merge operations are controlled by the
merge controller. Many k strings are merged at one time
using the sorting array. Merged strings output from the
sorting array are re-stored in the working storage as a
new string. Many records can be sorted in a few stages
of k-way merging because the merge ways k is in-
creased.

Working Storage Sorting Array

1 Merge
?—4» Cont.
)

B sl
]

String .

CMP:Comparator
MA: A-Memory

Sorting element
MB: B-Memory

Fig. 1 Block Diagram of Multiway Merge Sorter.

435

The parallel comparison of the sorting array is il-
lustrated in Fig. 2. Records represented by integers are
sorted in descending order. A comparison operation
and a transfer operation based on the comparison result
are synchronously performed in each sorting element.
During an input operation, records are input from the
left edge of the sorting array. The smaller record (or
more accurately, the less large of the two) in either MA
or MB is selected and transferred to the neighboring
rightward element. Conversely, during an output opera-
tion, the larger record is selected and transferred left-
ward. The largest record in the array is thus always kept
in the left-most sorting element at each input/output
step. In other words, regardless of the sequential order
of the records, the records are read out without any
delay time. For a sorting array consisting of [k/2]
comparator elements, k records are sorted and k strings
merged within the time it takes to input and output the
records, where [k/27] is a minimum integer greater
than or equal to k/2.

2.2 Multiway Merge Algorithm

A large volume of records can be sorted with few
merge stages by implementing a large number of merge
ways. Here we describe a data-driven string-selection
technique using bank-tags that permits a high
throughput to be maintained without complicating the
control mechanism, even expanding the number of
merge ways.

A k-way merge control using bank-tags is depicted in
Fig. 3. The figure shows an example of four-way merg-
ing in descending order. Four strings indicated by the
bank numbers #0 to #3 have been stored in the working
storage.

M1-phase: The sorting array is filled with the largest
records in all the strings to be merged; that is, the
records located at the tops of the strings. Bank-tags are
attached that indicate to which strings the records
belong.

M2-phase: Merge operations—record output and subse-
quent input to the sorting array—are performed suc-

{ INPUT OPERATION ] { OUTPUT GPERATION ]
- Step ¢’ ) .

O : Selected Record for Next Transferral

Fig. 2 Schematic diagram of input-output operation.



436

M1-phase Working Storage Bank-Tag
............... AR K—

Bank
0T 5, @ Sorting Array.....
h TS l
2 7, 3, 5, (@)
$B: T 6, 1, @) P

Fig. 3 Continuous Multiway Merging Diagram using Bank-tag.

cessively until all merging strings are empty. The largest
record in the sorting array is immediately output with
the bank-tag. This is the largest included in all merging
strings. The second-largest candidate records are
limited to any of the remaining ones in the sorting array
or the top one in the string indicated by the largest
record’s bank-tag. This top one is input to the array
and is compared with the remaining k£ — 1 records. Suc-
cessive multiway merging is achieved by this alternate
record output-input operation.

The bank-tag controlling the k-way merge processing
is attached to the least significant part of the record so
as not to affect the record comparison. The minimum
number of required bits for the bank-tags is [log, k7 ;
thus, a large number of k-way merges can be easily
achieved employing a sorting array with [k/27] sorting
elements with very little control overhead.

The total number of merge stages for sorting N
records is [log N'|. The relation between the merge
way number and the record number is shown in Fig. 4.
It is apparent that more records can be sorted with
fewer stages as the number of merge ways increases.
Also, the sort processing time for N records—viz., the
interval from when the first record is input until the last
sorting result is output—is realized in O(N) time
because the processing in each stage is done as a parallel
comparison by the sorting array. The time is thus pro-
portional to the number of stages O(Nxlog, N).

2.3 Advanced Features of the Sort Algorithm

The basic algorithm for sorting a large amount of
records is achieved by the repetition of k-way merge
processing. Here we consider some of the unique at-
tributes of the algorithm.

(1) A multiway (several tens of ways) merge circuit
is easily realized by combining the parallel comparison
on the sorting array and data-driven string-selection
technique using bank-tags. Merge processing can be ex-
ecuted in O(N) for a large number of merging ways,

T. SATO, H. TAKEDA and N. Tsubpa

M
256k 5
= e stages
8
stages

g 16k
&£

4k stages

lk 1 1 1 J

16 32 64 128 256

Number of merging ways (k]

Fig. 4 Relationship of merging ways and record numbers.

and thus a large number of records can be sorted very
quickly with few stages. In actual applications employ-
ing the multiway merge algorithm, processing times of
O(3N) and O(4N) have been achieved.

(2) The maximum number of sorting records
depends on the capacity of the working storage, and is
not dependent on how the sorting array or controller
are configured. Moreover, by increasing the scale of the
sorting array and expanding the number of merge ways,
the duration of sorts can be shortened with fewer merge
stages. This means the sorter can be flexibly configured
to optimize either sorting speed or the maximum
number of sorting records.

(3) Since the sorting array where the records are
compared and the working storage are implemented
separately, great flexibility is available in terms of scale
and extent of hardware implementation. For example,
by adding a dedicated hardware sorting array to a
general purpose computer, merge operations with con-
ventional software can be greatly accelerated. Or, by
constructing an all-hardware sorter with a merge con-
troller, a very fast and compact sorter is realized.

3. Large-Capacity Sorter Configuration

A sorter applied to database processing handles
retrieval results in a temporary table, and must
therefore be capable of flexibly handling different
numbers and different lengths of records. In this sec-
tion, we describe a multistage merge sorter that meets
these requirements. In this sorter, k strings in the work-
ing storage are merged and then re-stored there.
Through repetition of this process in each k-way merge
stage, a massive number of records can be sorted. What
follows is a more detailed consideration of an efficient
method of storing the strings in the working storage and
a sorting array that flexibly deals with records of
different lengths.

3.1 Multistage Merge Sorting

(1) Multistage Merge Control

Three- or four-stage multiway merge processing is
fully capable of sorting a sufficiently large number of
records to be practical. In contrast to conventional



A Multiway Merge Sorter for Sorting of Large Databases

multistage hardware schemes such as whose used in
pipeline merge sorters, here a high-speed sorter is com-
pactly realized by exploiting a successive merge proc-
essing approach. The multistage merge sort is executed
in three types of stages summarized as follows.
Pre-merge Stage: In this stage, all sorting records are
divided into k-record strings and sorted in the sorting ar-
ray. Sorted records are stored in the working storage as
strings of size k where the size of the strings is equal to
the number of records they contain. When the record in-
put is finished, there are [ N/k] strings in the working
storage.

Intermediate Merge Stages: In these stages, the strings
stored in the working storage are successively merged in
iterative k-way merge processes. At each stage of the in-
termediate merge processing, the k strings stored in the
working storage are merged one at a time and then re-
stored as a single string. The size of the generated str-
ings is increased k times and their number is decreased
in 1/k. The intermediate merge stage processing con-
tinues until the number of strings is below k.

Output Merge Stage: In this stage, the strings in the
working storage that have been reduced to less than & in
the intermediate merge stage processing are merged and
output.

The processing of the pre-merge and output merge
stages is carried out concurrently while records are be-
ing transferred between the host computer and the
sorter. Thus, the delay time in the sorter (from the end
of record input to the beginning of output) is
Nx([logy N| —2), where N> k2, Typically this is equal
to the time required for the one stage—at worst the two
stages—of the intermediate merge processing. Further-
more, since the sort processing is carried out through
successive merges, the maximum number of records
that can be sorted is disassociated from the hardware
configuration.

(2) Storage Management

In the intermediate merge stages of the successive k-
way merge processes, k strings are read out from the
working storage, merged, then re-stored there. Thus, an
efficient memory management method is essential to
effectively exploit the memory space that is available.
We will now evaluate a number of memory manage-
ment schemes in terms of the effective memory utiliza-
tion factor, assuming N records of L length are to be
sorted—i.e., LN/ (storage capacity).

Conventional memory management algorithms in-
clude the dual memory, the pointer, and the block divi-
sion methods [9]. In the dual memory approach the
working storage is divided into two areas for alternate
use. Control is quite simple but the utilization factor is
1/2. The pointer method manages available space by ad-
ding a pointer to each record that indicates the next
record to be accessed. The method offers very simple
control, but its memory utilization factor is
L/(L+pointer length), and efficiency declines further

437

Pre-merge  Intermediate merge Output merge
—_—N — ——

Auxiiiary
area

Input i Qutput

=

}

= |

{
EENENN

Fig. 5 Merge Process using the Area Store Method.

for shorter records. In the block division method, fixed-
sized blocks are allocated to store some or part of str-
ings and reused by implementing pointer chains for con-
trol within the blocks. This represents a finer level of
subdivision than just partitioning the memory in two as
in the dual-memory approach, and thus provides a bet-
ter utilization factor. With the block division method,
auxiliary & blocks equaling the k-way merge number are
requried. This method is effective in areas where the
way number is small.

Considering the drawbacks of the conventional
methods, we investigated an area store method for
memory management in the multistage merge sorter
that yields a memory utilization factor of k/(k+1).
With this method, the utilization factor is enhanced as
the number of merge ways is increased. The merge proc-
ess using the area store method is shown in Fig. 5. In the
premerge stage, input records are sequentially stored as
strings of size k in the working storage starting from the
bottom address. A single string is stored in a con-
tinuous area which permits uncomplicated memory
management. At the end of this stage, the auxiliary area
is located above the area containing the strings. The in-
termediate merge stages are performed so as to main-
tain a continuous auxiliary area, and merged strings are

‘continuously stored from the top and bottom of the

working storage in alternating odd-even stages.

An auxiliary area distinct from the area where the &
input strings are kept is prepared to store the output
merged strings. Its capacity is equal to the maximum
size of the strings stored in the working storage. In
other words, it is equal to the size of the largest string
output in the last intermediate merge stage.

The condition for minimizing the size of the auxiliary
area is that the size of the output string generated in the
last intermediate stage consist of uniform-sized k str-
ings. This can be accomplished by generating a string
equivalent to k? strings in the preceding last in-
termediate merge stage. In effect this means that a string
equivalent to an exponential power of k strings is pro-
duced in working storage at the first stage of the in-
termediate merge processing. At the first stage of in-



438

t

1s
Sorting elenem\: ................................

T. SaTo, H. TAKEDA and N. Tsupa

Fig. 6 Architecture of the Prototype Sorting Array.

termediate merge stages, power-of-k strings can be
generated with a size differential of no more than k even
in the worse case because the number of input records is
definitely known at the end of the pre-merge stage.
Generally, N »k and multistage merge operations can
be controlled so the difference in the & size of the strings
is kept through the intermediate merge stages. Greater
uniformity than this is not required.

3.2 [Implementation of the Sorting Array

(1) Basic Configuration

The sorting array consists of one-dimensional
cascade-connected comparators, and thus is well
adapted to implementation in large-scale integration. A
prototype sorting array chip [10] integrating 40 sorting
elements is shown in Fig. 6. The figure shows an exam-
ple of record sorting using 5 records, each of which con-
sists of 4 bytes. The records W, Y, and Z have already
been input into the sorting array and have been quasi-
sorted in descending order. The sorting sequence con-
sists of transferral and comparison of single bytes.
Record X is to be input and compared with record Z in
four sequences at the first element. In the sequence
stage shown in the figure, x2 (the 3rd byte of record X')
is input and compared with z2 which was read from
memory MB in the first element. Simultaneously, y2 is
input to the second element, (Y was transferred as a
result of the previous record comparison in the first ele-
ment), and compared with w2 read from memory MA
in the second element. After four comparisons and
transfers, the record comparison result is determined.
Based on the result, switches (SWA, SWB, SWC) are
set to make the data transfer path. The data transfer
direction determined by record input and output opera-
tions is switched to either SWL or SWR.

(2) Record Length Expansion

Records are kept and compared in each sorting ele-
ment. Therefore, the record length is limited by the
memory capacity of each element. Obviously longer
records could be accommodated by increasing the
memory capacity of the elements, but this would result
in poor memory utilization when short records are proc-
essed. Thus, instead of increasing the memory capacity

of the elements, longer-length records are handled by
cooperative interconnection between the elements.
Records that exceed the memory capacity are partition-
ed and stored in interconnected elements. Partitioned
record segments are independently compared in the
elements to which they have been allocated. Then the
comparison results are integrated by an inter-element
control circuit. When elements are interconnected in
this way, the effective element number of the sorting ar-
ray becomes 1/(number of interconnected elements).

This element interconnection method requires cir-
cuits to accumulate the comparison results and bypass
circuits to transfer data between elements. If these cir-
cuits to support interconnection between elements were
applied across multiple chips, this would increase the
pin-count of the chips and also decrease the comparison
speed. Element interconnection has thus been confined
within chips and is not applied between chips. By in-
tegrating this interconnection circuit together with the
sorting elements, a greater number of elements can be
realized in the same hardware volume.

(3) Bi-Directional Sorting Method

The sorting operation for k records is performed
within the successive k-record input and output time in
the pre-merge stage. The input and output of records
thus becomes intermittent. To remedy this problem, a
bi-directional sorting method has been implemented
that reduces the processing time in the pre-merge stage
by half.

With bi-directional sorting, alternating input/output
operations are performed through PORT-A and
PORT-B (located on the left and right edges of the sor-
ting array, as shown in Fig. 6), which can also proceed
concurrently. To implement the capability, records
entering the sorting array through PORT-A must
somehow be distinguished from those entering via
PORT-B. The conventional approach was to tag all
records entering the sorter regardless of whether
through PORT-A or through PORT-B, then determine
the entering port at each comparator circuit aligned in a
one-dimensional array. Unfortunately, this scheme in-
volves very complicated compare circuit control6,
which results in a marked decline in throughput. To




A Multiway Merge Sorter for Sorting of Large Databases

Bit reverse cir.

Flag appender

INPUT
| R

Sorting array

Fig. 7 Block Diagram for Bi-directional Sorting.

avoid this problem, we have added hardware to the in-
put/output terminals of the present sorting array that
implements the bi-directional capability.

A schematic of the hardware supporting bi-direc-
tional sorting is shown in Fig. 7. After attaching control
flags to the fronts of records, i.e., the most significant
bit, they are input to the sorting array via a bit-reverse
circuit that reverses the input/output records with con-
trol flags. By controlling both the control flag value and
bit-reverse circuits, all records input through PORT-A
are always larger than those input through PORT-B.
Records input through the two ports are thus clearly
distinguishable to realize bi-directional sorting. The
record modification rules for implementing bi-direc-
tional sorting are summarized in Table 1. This method
permits sorting in either ascending or descending order
while at the same time supporting the bi-directional
capability. The sorting array is thus able to perform con-
sistent comparison and transfer operations regardless
of the sorting order. The control of the comparator
elements is also simplified. Moreover, since the flags at-
tached to the fronts of records and the bank-tags de-
scribed earlier are the same length, the record length
handled by the sorting array can be made uniform
through all the process stages—pre-merge, intermediate
merge, and output merge.

4. Implementation and Performance Evaluation of
the Sorter

Each chip employed in the prototype sorting array
shown in Fig. 6 is capable of comparing 80 16-byte
records in parallel at a throughput of 3M-bytes/second.
A single-board prototype sorter was configured using
this VLSI sorting array chip, an 8MB working storage,
and a microprocessor. The prototype sorter sorted
500,000 records in three merge stages in 13.4 seconds.
Each record consisted of a 15-byte integer and 1-byte
control data which act as either bank-tag or control
flag. The record length expansion technique described
in Section 3.2 and the bi-directional sorting method
were thus found to perform up to the designed expecta-
tions. By further implementing the area store method, a
large-capacity sorter was realized.

A hardware sorter based on the present algorithms
was implemented in the relational database processor
RINDA (11, 12]. The sorting array and merge con-
troller in the sorter is integrated by using dedicated
VLSIs. The RINDA hardware executes high-speed selec-
tions and restrictions for large databases stored in disks

439

Table 1 Record modification rules for bi-directional sorting.

Bit-reverse circuits

Sorting Order Flag
PORT-A PORT-B
Ascending ‘0’ Bit-reverse Through
Descending ‘r Through Bit-reverse

and sorting, and also accelerates join operations. The
RINDA is connected between a host computer and a
disk device by means of channel interfaces. The com-
pact sorter implemented in RINDA is described below.

(1) Pre-merge and output merge stage processes are
performed within the tuple transfer terms to/from the
RINDA. The transferred tuples are placed in a tem-
porary table including a null column and variable-
length tuples. Dedicated hardware then performs col-
umn extraction and code conversion to convert the
tuples to fixed-length records. As a result, the length of
the sorted records generally becomes shorter than the tu-
ple length. The sorter architecture does not depend on
the number of columns or attributes. Measured results
reveal that the processing time in the intermediate
merge stages takes less than 10% of the tuple transfer
time, and the sorting could be accomplished in about
the same time as the tuple transfer.

(2) The comparator element interconnect capability
permits the sorting of records up to 250 bytes in length.
Moreover, by employing large capacity dynamic-RAM
chips, 64 MB of working storage could be implemented
compactly.

5. Conclusions

The basic algorithm and implementation of a com-
pact sorter to apply a large database has been described.

(1) A high-speed multiway merge algorithm has
been devised that is capable of several tens of merge
ways through the use of a data-driven string-selection
technique and a pipelined parallel comparison techni-
que. Through repetition of the merge processing, a
large amount of records can be processed.

(2) A sorting array for comparing the records and a
working storage for storing the records can be imple-
mented separately in high-density VLSIs. This makes
it possible to devise a compact sorter that can be op-
timized for a range of sorting applications.

(3) By using the element connection method in the
sorting array, the length of sorting records can be ex-
tended. A hardware sorter implementing this technique
has been designed that offers enhanced flexibility to ac-
commodate longer record lengths.

(4) An area store method has been devised that
efficiently exploits the working storage to enable large-
capacity sorting. For a multiway (several tens of ways)
merge sorter, a very satisfactory memory utilization fac-
tor is achieved.



440
Acknowledgement

The authors express gratitude to Tadamichi Kawada,
Executive Research Engineer at NTT’s Applied Elec-
tronics Laboratories, for his guidance in pursuing the
present work. They also gratefully acknowledge many
useful suggestions from their colleges in the RINDA
Group.

References

1. KNUTH, D. E. The Art of Computer Programming, 3, Sorting
and Searching, Addison-Wesley, 1973.

2. Topp, S. Algorithm and Hardware for a Merge Sort Using Multi-
ple Processors, IBM J. Res. & Dev., 22, 5 (Sept. 1978), 509-517.

3. TANAKA, Y., NozakA, Y. and MAasuYyama, A. Pipelined Sear-
ching and Sorting Modules as Components of a Data Flow Database
Computer, Proc. of IFIP Congress ‘80 (Oct. 1980), 427-432.

4. KITSUREGAWA, M. and YANG, W. Evaluation of 18-stage Pipeline
Hardware Sorter, Int’l Workshop on Database Machine (June 1989),
142-155.

5. KUMAR, M. and MIRSCHBERG, D. S. An Efficient Implementation
of Batcher’s Odd-Even Merge Algorithm And Its Application in

T. SaTo, H. TAKEDA and N. Tsuba

Parallel Sorting Schemes, IEEE Trans. Comput. (Mar. 1983), 254~
264.

6. MIRANKER, G., TANG, L. and WonNG, C. K. A “Zero-Time”’
VLSI Sorter, IBM J. Res. & Dev., 27, 2 (Mar. 1983), 140-148.

7. KITSUREGAWA, M., YaNG, W., FusHimi, S., KIMURA, H.,
SHINANO, J. and KASAHARA, Y. Implementation of LSI Sort Chip for
Bimodal Sort Memory, Int’l Conf. on VLSI '89 (Aug. 1989), 285-
294.

8. SaToH, T., TAKEDA, H. and Tsupa, N. A Compact Multiway
Merge Sorter Using VLSI Linear-array Comparators, Int’l Conf. on
Foundation of Data Organization and Algorithms (June 1989), 223-
227.

9. KITSUREGAWA, M., FusHiMI, S., TANAKA, H. and MoTO-0kA, T.
Memory Management Algorithms in Pipeline Merge Sorter, Ins’l
Workshop on Database Machine (1985), 208-232.

10. Tsupa, N., SAToH, T. and KawapA, T. A Pipeline Sorting
Chip, JIEEE ISSCC Digest of Technical Papers (Feb. 1987), 270.

11. Inoug, U., Havami, H., Fukuoka, H. and Suzuki, K.
RINDA—A Relational Database Processor for Non-indexed Queries,
Int’l Symp. on Database Systems for Advanced Applications (Apr.
1989), 382-386.

12. SatoH, T., TAKEDA, H., INOUE, U. and Fukuoka, H. Accelera-
tion of Join Operations by a Relational Database Processor, RINDA,
Int’l Symp. on Database Sysems for Advanced Applications (Apr.
1991), 243-248.



