Translation from Transactions of IPSJ

An Efficient Sentence Analysis Method
for General Phrase Structure Grammars

TaTtsuya Hayasur*

This paper describes an efficient sentence analysis method for logic grammars that are based on Chomsky’s
type-0 and type-1 phrase structure grammars. It is an expansion of the YAPXR system, which accepts
Restricted Context-Sensitive Grammars (RCSGs). This approach, like the YAPXR, is therefore based on a
breadth-first top-down method, and is capable of effectively carrying out sentence analysis by using the extend-
ed LR method, which contains the concepts of kernel or pseudo-kernel positions. Expressions based on context-
free grammars are not particularly suited to languages such as Japanese, which has the characteristics of free
order, abbreviation, and non-crossing dependency relationships found among ‘‘Bunsetsu’’ phrases in
sentences. Gapping grammars, on the other hand, are also capable of handling languages with free word order,

but have rather poor performance.

The proposed method is more appropriate for such languages, since it provides the power of phrase structure
grammars with improved efficiency, using the concepts of pseudo-kernel or, when possible, kernel positions.

1. Introduction

The author has introduced the YAPXR Sentence
Analysis System for Restricted Context-Sensitive Gram-
mars (RCSGs) on previous occasions [1-5]. RCSGs are
based on context-free grammars, but also accept con-
text-sensitive rules if parsing efficiency is not affected.

RCSGs follow the framework of context-free gram-
mars.

RCSGs are not particularly suited to sentence struc-
tures above the phrase level in languages such as
Japanese that have free order and abbreviation.

Gapping grammars are capable of concisely express-
ing a language with free word order [6-8].

However, the performance of gapping grammars
may be poor because gaps match arbitrary-length, par-
tially derived strings containing zeros, and are produced
by the generation-and-testing method.

Japanese is said to have free word order, but the
freedom is not unconditional. The dependency relation
of a phrase applies only to the phrase to the right. It
never applies to the phrase on the left, and the
dependency relations do not cross each other.

Japanese language can be described plainly by using
general phrase structure grammars, which are logic
grammars based on Chomsky’s type-0 or type-1 phrase
structure grammars [9]. This description relies on the in-
troduction of nonterminal symbols representing
dependency relations.

This is a translation of the paper that appeared originally in
Japanese in Transactions of IPSJ, Vol. 31, No. 12 (1990), pp. 1718-
1726.

*Fujitsu Laboratories Ltd.

Journal of Information Processing, Vol. 15, No. 3, 1992

We regard these dependency relations as syntactic
events. This makes it important to develop an efficient
parsing technique for phrase structure grammars.

A practical parsing system based on the breadth-first
top-down method for phrase structure grammars can be
created by expanding the YAPXR system [10, 11].

This paper describes the process of creating such a
system and consists of':

Section 1: Introduction,

Section 2: Term definitions,

Section 3: Grammar description format,

Section 4: Implementation, and

Section 5: Operational example.

2. Term Definitions

This section defines the key terms used in this paper,
apart from general terms and notations used in formal
language theory.

A different ID number should precede each syntactic
element on the right-hand side of the following rule:

a—p, (ae V*, fe V*).

These numbers are called position IDs. The position
IDs immediately before and after each element are
called its left and right positions. A position ID should
also be given to the ¢ rule. Rule 0 is an exception,
however, since ‘b’ and ‘‘e’’ are used there as position
IDs, as in So—bSe —i.

2.1 Leftmost Derivation Position

Assume that the right-hand element of a certain rule
is A(e V) and the left position is n.

An Efficient Sentence Analysis Method for General Phrase Structure Grammars 419

S0 => ad 6 = afy=any, (o, 7, 6, ne V*, fe V")

In the example above, if n starts from m, m is called
the leftmost derivation position of n, represented as
me LD(n).

The ¢ rule, however, does not apply in a4 = affy.

2.2 Position Set

Assume that element A (e V) is not at the left corner
of the right-hand side of a rule and that the left position
is n. The set represented as {n}ULD(n) is the position
set of A. The position set is only permitted as an excep-
tion for the left-corner element S of Rule 0.

2.3 Kernel Position

Assume that n and x are elements in the position set.
If xe LD(n), nis treated as either the kernel position of
the set or the kernel position corresponding to x.

We can easily deduce that x is to the left of the left-
corner element on the right-hand side of the rule. It
therefore cannot be a kernel position, except for “b”’
mentioned above. The kernel position can also be
regarded as the position set ID.

2.4 Parsing Path

For an input sentence, a,, a; - - - a,, assume a partial
input string, a, - - - a;,(1<i=n). Now assume that one
of the leftmost derivations contains the partial input
string:

So=2>a - ai o, (ae V*).

A parsing path consists of a kernel position string,
bny n; - -+ n; (1 =), starting with b. The path represents
the rules and their application order, starting from rule
0, thus showing how the partial input string (@, - - - @)
was obtained. It also represents the positional range of
each rule that the partial input string seems to corres-
pond to. In other words, the parsing path is a reduced
expression of the leftmost derivation. The corre-
sponding leftmost derivation can be obtained from
each parsing path instead. Strictly speaking, several left-
most derivations may temporarily correspond to a
single parsing path. However, there is no need to
distinguish them.

2.5 Internal Parameter

A parameter can be given to element A on the left- or
right-hand side of a rule by enclosing it in parentheses,
as in A (IX). This is called an internal parameter.

A parameter is used to characterize the partial input
string that corresponds to A with some sense.

A parameter value is obtained directly or indirectly
from a word dictionary or set directly in the rule. In the
latter case, the value is specified by adding a parenthesis
after the parameter name.

2.6 Basic Constraint

The basic constraint is a logical expression or prolog
predicate related to an internal parameter.

This constraint can be described at an arbitrary posi-
tion on the right-hand side of the rule.

3. Grammar Description Format

The grammar used here is a phrase structure gram-
mar that contains all the functions used in the conven-
tional YAPXR.

The basic format is as follows:

LHS—RHS

LHS: LHE - - -

LHE: syntctic element [(internal parameter, - - -)]
[(/external parameter, - - - /)]

RHS: ¢ or RHE - - -

RHE: syntactic element [(internal parameter, - - -)]
[(/external parameter, - - - /)]
[slash category]
[{context dependent constraint}]
[{basic constraint}]

The external parameter, context dependent con-
straint, and slash category are not explained here
because they are not relevant to the subject of this
paper. (Interested readers should consult {2, 4] and [5]).

4. Implementation

As long as the description format matches that of
RCSGs, the conventional technique applies. This sec-
tion explains the implementation method for general
phrase structure grammar rules.

RCSGs enable all the kernel positions corresponding
to the left-corner element on the right-hand side of the
rule to be easily calculated when a grammar is given.
However, this is not always true for phrase structure
grammars. This paper at first assumes that all the kernel
positions can be calculated.

First assume the following grammar rule:

PPy Pp="Q0 Qs oo M Qy
(P;, Q e V, nk: positional ID)

For simplicity, parameters and constraints are
ignored here. Assume that the predicates corresponding
to Pi and Qj are pi and g;.

The parameters for YAPXR are as follows:

n: First element of the parsing stack

A;: Remaining parsing stack (input)

Ao, Ao: Parsing stack (output, differential list)

O;: Abbreviation stack (input)

0,, Oy : Abbreviation stack (output, differential list)
L;: Parameter stack (input)

Lo, Ly: Parameter stack (output, differential list)
T:: Parse tree stack (input)

To, Toi: Parse tree stack (output, differential list)

420

The abbreviation stack is not related to this subject,
so it is ignored here. Since the parsing tree for a phrase
structure grammar becomes complicated, the depend-
ency relation (W1, W2) should be placed on the parse
tree stack. (W1, W2) means that phrase W1 depends
on phrase W2.

4.1 Left-Corner Type

The Horn clause corresponding to syntactic element
Q1 is as follows:

ql(ll, Ai, [[nz, 11 |A,]|Ao], Ao, L,’,

[[Li]ILol, Lo, T, ([T} Tol, To).
q(12, A;, [[n2, 12| A1 Ay}, Ao, L;,

[[L]ILol, Lo, T, [T To}, To).

q(lk A, [[n2, 1k1A]1 Ao, Ao, Li,
[[L}ILo), Lo, T;, [[T3)| Tol, To).

/1 to Ik are the kernel positions corresponding to nl. In
phrase structure grammar, elements with /i for their left
position are not always nonterminal symbols.

It may be hard to calculate the kernel positions corre-
sponding to nl, as mentioned before. However, this
does not mean that parsing is impossible.

Parsing can be performed by either of the following
two methods:

The first method is to extend the parsing path to n2,
assuming that the first element of the parsing path is a
corresponding kernel position.

This is not efficient in terms of time and space, but it
does ensure correct parsing. Since parsing is executed
from the bottom up in this method, the ¢ rule is pro-
hibited.

The second method is more practical and permits use
of the ¢ rule.

Consider only the first element on the left-hand side
of a phrase structure rule. All the kernel positions corre-
sponding to the left-corner element can be calculated in
the same way as in restricted context-free grammars.

These are called pseudo-kernel positions.

As is easily seen, the original kernel positions are also
pseudo-kernel positions.

Left-corner action can be created by using the
pseudo-kernel positions.

4.2 Inside Type
The Horn clause corresponding to Q; is as follows:

qx(n2, A, [[n31A4]1 A, Ao, L,
[[L}1Lo], Lo, T, [[T})I To), To). -
This is exactly the same as before
4.3 Right-Corner Type
The Horn clause corresponding to Q, should be deter-
mined as follows:

gn(nn, [nl A}, Ao, Ao, Li, Lo, Lo, T, To, To)): —
pi(n, A, A, Aoy, Liy L1, Loy, T}, T1, Tyy),

T. HAYASHI

p00(Al, A2, L1, L2, T1, T2),

PmOO(Am-I, AO) Lm-l; LO, Tm-ly TO)~

In phrase structure grammars, left-hand side predicates
are activated sequentially in the prescribed order. This
assumes that a partial input string corresponding to all
the left-hand side elements has been detected.

From the viewpoint of the derivation from S0, the
right corner action is to proceed along the parsing path
from the right position of the last element of to the left
position of the first element of y in the following:

So => aP\P; -+ Puy=aQiQ; - - Quy

For p,00 to p.00, the parsing stack (input) generally
consists of more than one parsing path, in the same way
that predicates correspond to input sentences. The only
difference is that the list ends with a variable in this
case.

Therefore, the following Horn clause should be
created for the interface:

pJOO([[NlAh] IAI]’ AI! [Lh‘L!]) Lj’ [Tnl Tl]s T/'):-
Pi(N, An, A}, Ajr, Ln, Lj, L, Tw, Tj, Th),
pi00(A, Ay, L, Ly, T,, le)-

Pi00(Aa1, Ao, Lo, Loy, Tors Tor,):-!.

For the right-corner action in the pseudo-kernel
position system, the predicates corresponding to the
left-hand side elements should also be activated
sequentially.

The kernel position system always has the final pars-
ing path. In the pseudo-kernel position system,
however, the parsing paths may disappear during suc-
cessive predicate activation.

The pseudo-kernel position system is not as efficient
as the kernel position system, but is more efficient than
the bottom-up system. It may be used as an inter-
mediate system between them.

5. Operational Example

This section explains how the parsing system works,
using simple instances of Japanese grammar as illustra-
tions.

Figure 1 shows an example of grammar. This was
created by slightly revising Ref. 9.

[e] is a period. [p] is a terminal symbol for a phrase and
has the following parameters:

W: Independent word +adjunct

C1: Part of speech of independent word

C2: Part of speech or inflection of adjunct

rel is a nonterminal symbol representing a dependency
relation.

There are no rules that have only rel on the left-hand
side. Therefore, no terminal symbols are derived from
them.

To make things simple, no parameters are given to

An Efficient Sentence Analysis Method for General Phrase Structure Grammars 421

0. se — *s*

1. s — ‘'prseq? [p] (wcl,c2) {c2=end} * [e]
2. prseq — * [p] (w,cl,c2) *rel

3. prsea = ¢ [p] (w,cl,c2) “rel prseq

4. [p) (wl,cll,cl2) rel [p] (W2,c21,c22) — ° [p] (wl,cll,cl2) '°prseq
" {p] (w2,c21,c22) {check(cll,cl2,c21),put(wl,w2) }

5. [p) (wl,cll,cl2) rel [p) (w2,c21,c22) — '* [p] (wl,cl11,c22) '*rel

Ysprseq '® [p] (w2,c21,c22) {check(cll,cl12,c21),put(wl,w2) }

6. [p] (wl,cil,cl2) rel {p) (w2,c21,c22) — ¢ [p] (wl,c11,c12) '7 [p]
(w2,c21,¢22) {check(cll,c12,c21),pul(wl,w2) }

check(n,ga,vt) .
check(n,ni,vt).
check(n,wo,vt).
check(vt,cn,n).

Fig. 1 Example of phrase structure grammar.

¢s”” or ‘“‘prseq’’ here. ‘‘check’’ in Rules 1, 4, 5, and 6 is
a simple predicate that checks whether dependency is
syntactically possible. The ‘‘put’’ instruction stores the
dependency relation (W1, W2) in the parse tree stack.

The basic constraints in Rule 1 indicate that the final
phrase must have an end form.

In this example, all the kernel positions can be
calculated.

There are seven kernel positions (b, 8, 10, 14, 11, 15,
and 17) corresponding to the left-corner elements *[p],
[p], and “[p].

Assume that the input sentence is ‘‘tarouga jirouni,
renrakusuru kotowo yakusokusuru.’’

Assume the following input predicates to this system.

yopen (Al, L1, T'1),

p0 (A1, A2, L1, L2, T1, T2, [tarouga, n, gal),

p0 (A2, A3, L2, L3, T2, T3, [jirouni, n, nil),

p0 (A3, A4, L3, L4, T3, T4, [renrakusru, v¢, cn}),
p0 (A4, AS, L4, L5, T4, TS, [kotowo, n, wol),

p0 (AS, A6, L5, L6, TS, T6, [yakusokusuru, v¢, end]),
e0 (A6, A7, L6, L7, T6, T7, [’.’, end, end)),

yclose (A7, L7, T7).

n: Noun
vt: Transitive verb
cn: Conjunctive
end: End form
yopen: Predicate to initialize the stack
yclose: Predicate to output the result (dependency struc-
ture)
There are 22 parsing charts. From the viewpoint of

(1)
(tarouga, yak u) (jirouni,yak u) (jirouni,renrakusuru)
(renrakusuru,kotowo) (kotowo,yakusokusuru)
(2)
(tarouga, u) (jirouni, u)
(renrakusuru,kotowo) (kotowo,yakusokusuru)
(3)
(tarouga, yakusokusuru) (jirouni, renrakusuru)
(renrakusuru,kotowo) (kotowo,yakusokusuru)
(4)
(tarouga, renrakusuru) (jirouni,renrakusuru)
(renrakusuru,kotowo) (kotowo,yakusokusuru)
(5)
(tarouga, yakusokusuru) (tarouga,renrakusuru) (jirouni,renrakusuru)
(renrakusuru, kotowo) (kotowo,yakusokusuru)
Fig. 2 Result of analysis of input sentence.
Se
|
bs
I I 1
! prseq Plel e
‘(r) ® rel
| |
|
I I 1
ML '*prseq e
“ Ip) ‘trel
| I—
il
{ [1
"*p] 'Prel ‘'“prseq el
¢ [p] 7rel *prseq
'_‘ 1
e Tip] * [p] *rel
;:
1
e e]
1
1
e e]
| |
tarouga Jirouni renrakusuru kotowo yakusokusuru

Fig. 3 Parsing chart of input sentence.

the dependency structure, however, the results can be
reduced to the five shown in Fig. 2.

Figure 3 shows one of the parsing charts fo the above
input. This example remains ambiguous until context
processing is performed.

Since this system is based on the extended LR
method, a parsing chart is created from the bottom up
as in the conventional YAPXR system.

In Fig. 3, a partial chart is created for ‘‘kotowo,
yakusokusuru’’ according to Rule 6. Then the ““p, rel,
p"’ predicates are activated. The first p generates a par-

422

Table 1 Performance result

T. HAYASHI

Table 2 Revised performance result,

Kernel method Pseudo-kernel method

Kernel (pseudo-kernel) method

Parsing time 700 ms 800 ms
Memory size 44,372 bytes 261,452 bytes
Number of parsing 1.225 1,460
paths to [e]

SUN 3/60

Quintus Prolog R2.4

0. so — *s* |

1. s — 'prseq? [p] (wecl,c2) (c2=end} * [e]
2. prseq = * pr(w,cl,c2)

3. prseq = ° pr(w,cl,c2) ‘prseq

4. pr{wl,cil,cl2) [p } (W2,c21,c22) — 7 [p] (wl,cll,ci2) °®prseq
? [p] (w2,c21,c22) {check(cll,c12,c21),put(wl,w2) }

5. pr(wl,cll,c12) [p] (w2,c21,c22) — '° pr{wl,cl1,c22) '‘prseq
'2 [p] (w2,c21,c22) {check(cll,cl2,c21),put(wl,w2) }

6. priwl,cll,cl2) [p] (W2,c21,c22) — '* [p] (wi,cll,cl2) ' [p]
(w2,¢21,c22) {check(cll,cl12,c21),put (wl,w2) }

check(n,ga, vt).
check(n,ni,vt).
check (n,wo, vt).

check(vt,cn,n).

Fig. 4 Revised version of the phrase structure grammar.

tial chart for ‘‘renrakusuru, kotowo’’ through right-cor-
ner action based on Rule 6, and activates ‘‘p, rel, p”’
again. The parsing chart shown in the figure is
generated through the same procedure.

The difference from conventional RCSGs is that ter-
minal element [p] is the kernel position of the left-cor-
ner element *[p]. Table 1 shows the parsing time and
working memory size for the example.

Unlike in the kernel position system, *[p] is added to
the left-corner elements °[p], '}[p], and '¢[p] as a
pseudo-kernel position in the pseudo-kernel position
system.

There are redundant parsing charts for the example
sentence. Figure 4 shows the grammar revised to match
the number of different dependency structures. Table 2
shows the result of operating this grammar.

There are no further differences between the kernel
and pseudo-kernel position systems. The performance
is five or six times higher than before.

The appendix shows a parsing program (Quintus

Parsing time 133 ms
Memory size 44,372 bytes
Number of parsing paths to [e] 205

SUN 3/60

Quintus Prolog R2.4

Prolog version) based on the revised grammar.
The appendix also shows the Horn clause for the in-
put predicates.

6. Conclusion

This paper has described an efficient parsing system
developed for general phrase structure grammars by ex-
tending the YAPXR Breadth-first Top-down Parsing
System.

For languages such as Japanese that have free order
and abbreviation, it is not always appropriate to
describe complete sentence structures within the
framework of a context-free grammar. Gapping gram-
mars are capable of handling languages with free word
order, but have rather poor performance.

If the dependency relationships of the Japanese
language is considered as syntactic events, a phrase
structure grammar is more suitable. This system should
be very effective.

Like conventional YAPXR, the new method has the
following features:

(1) All the kernel or pseudo-kernel positions corre-
sponding to the left-corner element can be obtained as
soon as a grammar is given. No top-down forecasting is
necessary during execution.

(2) The Prolog compiler allows double hashing with
the first parameter as the atom.

(3) No back-tracking occurs during execution.

These features make the parsing system very efficient.

The major goal for the future is to develop a method
of calculating kernel positions within the wide range of
a phrase structure grammar,

This paper has only introduced the basic techniques
of the new method shown its potential advantages.

Further studies are required in order to apply the
method to the Japanese language on a practical level for
machine translation or natural language interfaces.

Acknowledgment

I would like to express my deep gratitude to Pro-
fessor Hozumi Tanaka (Tokyo Institute of Technology)
for his continuous guidance, and also to Shunji Miya,
Toshiya Sakamaki, and Kenichi Yoshida (Fujitsu SSL)
for their efforts in developing this system.

An Efficient Sentence Analysis Method for General Phrase Structure Grammars 423

References

1. HavasHi, T. YAP: Yet Another Efficient Parsing Method for
General Context-Free Grammars Based on the Logic Programming
Language, Trans. IPS Japan, 29, 9 (1988), 835-842.

2. HavasHi, T. YAPX: An Extended Context-Free Grammar and
Its Parsing Method Based on the Logic Programming Language,
Trans. IPS Japan, 29, 5 (1988), 480-487.

3. HavasHl, T. An Efficient Implementation Method of YAPX
Parsing System, Trans. IPS Japan, 30, 10 (1989), 1354-1356.

4. HavasHi, T., Miva, S., SakaMaki, T. and YosHipA, K. Im-
plementation and Evaluation of the Breadth-first Top-down Sentence
Analysis System, SIGNLP IPS Japan, 74-9 (1989), 65-72.

5. Havasul, T. Implementation and Evaluation of the Sentence
Analysis System YAPXR, Trans. IPS Japan, 31, 7 (1990), 970-978.

6. DaHL, V. and ABRAMSON, H. On Gapping Grammars, Proc. 2nd
International Conference on Logic Programming (1984), 77-88.

7. DaHL, V. More on Gapping Grammars, Proc. FGCS (1984),
669-677.

8. PorowicH, F. Unrestricted Gapping Grammars, Proc. IJCAI 85
(1985), 756-768.

9. SUGIMURA, R. Logical Dependency Grammar and Its Constraint
Analysis, ICOT Technical Memorandum TM-0679, p. 10 (1989).

10. HAavasHi, T., Miva, S., SAkaMaki, T. and YosHipA, K. An
Efficient Sentence Analysis Method for General Phrase Structure
Grammars, SIGNLP IPS Japan, 76-2, p. 8 (1990).

11. HavasHI, T. An Efficient Sentence Analysis Method for General
Phrase Structure Grammars, Trans. IPS Japan, 31, 12 (1990), 1718~
1726.

Appendix Parsing program for the revised grammar

1 yapxr_2(_Outfile):-

2 tell _Outfile),

3 statistics,

4 3 statistics(runtime,_),

5 yopen(_Ail,_Lil, Tll),l,

6 PO{_ AiT, A12 Lil, _Li2,_Til,_Ti2,{tarouga,n,qa]),!,

7 PO (_ “ai2,”ai3, L12 L13 Tiz, T13 [jirouni,n,ni]), !,

8 pO(_AL3, AH, “Li3,”Li4,_Ti3,”Ti4, [renrakusuru,vt,cnl), !,
9 pO(_Ai4,_ALS, Li4,_LiS5, Tu, ~Ti5, [kotowo,n,wo]), !,

10 pO(_AL5, Al6, Li5,_Li6,_Ti5,_Ti6, [yakusokusuru,vt,end]),!,
11 ¢ count_pass(_Al6,0)7

12 e0(_al6,_ai7, Liﬁ LL? '1‘16 _Ti7,('.',end,end]),!,

13 % statistics(runLime [

14 8 print{‘rumtime is ‘), prlnt(M),

15 statistics,

16 yclose(_Ai7, _Li7,_Ti7),

17 close(_Outfile).

18

19

gg yopen({[b)],[{1],({}}):-t.

22 pO({[_NI_An)|_At),_Ao,(_Lh|_Lt),_Lo,[_Th|_1t},_To,{_W,_C1,_C2]):— !,
23 p(,_Ah,_Ao, Aol [w, C]. C2| Lh], I.o, lol, Th, 'I.‘o, Tol),
24 pO(_AE,_Aol,_Lt, Dol _Tt,_Tol,T_W,_C1,_C2]).

25 po(()., [‘,_,(0

26 eO([[_N _Ah] _At), Ao th Lt),_Lo,[_Th|_Tt),_To,[_W, Cl,_C2]):~ ¢,
27 e(_N,_Ah,_Ao, Aol [w, Cl, C2[[.h], Lo, Lol, 'lh, 'lo, To].),
28 e0(_At, Aol _TLt, [ol, _Tt,_Tol,T_W,_C1,_C2]).

§g e0((), [}, .U,)—'-

31 s(b, Al [lel M]l Aol,_Ao,_Li, | ml _1o),_Lo,_Ti,[_Ti|_Tol,_To):- !.

32 s(_,_,_Ai,_Al,_,_Lt,_L1,_,_Ti,]

1):= 1,

34 prseq(b,_Ai, ((2,b]_Ail|_Ao), Ao, _Li,[{_Li| _Lo), Lo, Ti,[_Ti|_To],_To):- !.
f

35 prseqg(e,T N

Ai),_Ro, Aol, LI, Lo,_

Lol,_T1, '1‘0, Tol)-- [

36 prseq{_| N, Ai, 2o, Aol. _Li, Lo, Lol, Ti, TO, Tol)

37 prseq(l0,_A{i, T _AiT
38 prseq(l4,_Al,([15| Ai]

_Aol, Ao, L1 (_LT
Ao], Ao, _Li,

_Ta},_To):~ !.
_To),_To):- !.

_Lo),_Lo,_Ti,[_Ti
(TLi| o). ZLo, i, (i

39 prseq(_,_,_Al,_Ai,_,_Li7 TLi, T, T, _Tiyi- T.
40

41 pr(b,_Ai,[{8,b]_Ai],(14,b|_Ail|_Aol,_Rol,

42 [Tw,_C1, c2 i)

43 {CLiTw, rzi Li]|_Lo},_Lol,

44 T, (T, 'ni Tol _Tolj:i~ {5

45 Prseq(b, Al,_ Ro, Aol, Li, Lo, Lol,_Ti,_To,_Tol).
46 pr(8,_Ai,[[87e]_A1),T(14, sT ALT|_Ao)._ AS1,

47 {Tw,_c1, c2T Lij,

48 (CLis (v, __c2| Li]|_Lo},_Lol,

49 T, (LTt 'rii “To)7_TolY:~ 17

50 rseq(a, Ai, Ao,_Aol,_Li bo Lol, _Ti,_To,_Tol).
51 pri10, AL ({8,107 AT, (14710]"ALIT Aol _AGT,

52 {_W,_c1, c2| Li)

53 ITLiTi_W,_cl7_c2|_Li)|_Lo),_Lol,

54 T, T4, 0 [TTo) T_TolT:~ 1]

55 prseq(lo Ai,_Ao,_Aol,_Li, Lo, Lol,_Ti,_To,_Tol).
56 pr(l4, Ai,([8714{7A1},(14,T4(AL} | A0l, Aoly

424

T. HAYASH!

57 [_W,_C1,_C

56 (TLiT 1T e | L | SLel,_Lo1,

59 T4, [_T4, i o) _Tol]

60 prseq(l4, Ai, “Ao,_Rol, Li, Lo, Lol, _Ti,_To,_Tol).

61 pr(_,_,_Ai, AT,_,"Li, Li, ,_TiT_TiT:- I~

62

63 e(3,[_N|_AL], Ao, _Aol,[_W,_C1,_c2|_Li], Lo, _lol,_Ti,_To, _Tol):- 1,
64 s{_N,_Ai, ho,_Aol, Ti, Lo, Lol _Ti, To, Tol)~

65 e(_,_,_ai;_ai7_, _Li,_LT,_,mi,7m4):7 3.

66

67 p(2,_Ai,_ho,_Mol, (W, C1, €2|_Li),_Llo,_Lol,_Ti,_To,_Tol):-
6e 1(_Ccz =

69 Tho = [|3] AL} _Aol],

70 “Lo = [_LiT_Leo1T,

71 To - [Ti Tbl)),

72 (A ol, Tol)).

73 p(b,_AT, ([10 bl AiT,llv E| Ai]T Ao], “ho,

74 Tw, _c2

75 (T_w,_ci7 _c2 Li] W, c1, _C2|_Li)|_Lol,_Lo,

76 _TI,[CTi,Ti

77 p(8, TAi 1T10 8] Al] [17 a‘ A1]| _Ao),_Ro,

78 ,_C1, Li

79 [T_w,_c17_c2 Li] [_w,_ c1 _C2|_Li)|_Lo),_Lo,

80 _TL,(_Ti, T4 To):~

81 p(10,_ai,T[10710 Ai) "T17,10] A1)| _Ao},_hAo,

82 [Cw,_c1, czl Li),

83 (T_w,_c1,_c2]_Li),[_W,_c1,_c2|_Li)|_Lo}, Lo,

84 _T1, [Ti, Ty ~To),_To):- !

85 p(147 A1, T(10714["A1).T17,14] _Ail|_Aol,_ho,

86 [Cw,_c1,_c2|_Ti

87 [T_W,_c1;_c2T_Li], [_wW, c1, _c2|_ri)|_to},_Lo,

ee _T1, (CT1,°T1 | To) _To)+-

89 p(11(N Ai] {(10,11,_N]_Ai], (17,11, _N|_Aai}|_Ao2]),_aAcl,
90 [_W2,”c21,_c22, w1 _cl1, c12| Lil;

91 [T_w2,_c217 czz, w1, —c11;_c12T Li

92 (W2, T21, €22, W1, €11, €12|_Lil| Lo2],_Lo1,

93 _Ti,[CTi, _Ti To?], T'rol)r-

94 check(_C11,-C12,_C21),!,

95 pr(_N,"Ai, Ro, Acl,(_W1,_Cli,_c12|_Li},_Lo,_Lol,
96 (T Wi, _W2)|_Ti),_To,_Tol),

97 poO¢(Ao, Ao2, Lo, To2, To,_To2,[_W2,_C21,_C22]).

98 p(15,(NI _Ai),T(10,75,_N| Ai] {17.15,_N| Ai]l _Ao2],_Mol,
99 {_¥W2,_c21,_c22,_Wl,_ClI1, c12| Lx},

100 IT_W2,_c217_c227_w1,_c117_c12T Li]

101 [_W2,_C21,_C22, W1, C11, T12|_Ti}|_Lo2),_loi,

102 T4, (71, _Ti|_152),7rol)T~

103 chedk(T11,7C12, E21),1,

104 pr(_N.,”Ai, Ro,_Aol,[_W1,_C11,_C12|_L1),_Lo,_Lol,
105 |(Wi, _w2)] Tl], _To,_Tol),

106 Ao, Ao2, _Lo2, To, To2, [_W2,_C21,_C22)).
107 p(17,| N| _A1],Tl10, 17, N| _A1T, 117,17, _N]_aT) |_AG2),_ho1,
108 [_W2,7c21,_c22,_w1,_cl1, c12| Lil;

109 (Tw27_c217_c227 w1, c117 _c12T_Li

110 {_W2,_C21,_C22,_Wi1,_C11,_C12|_LTi) Lo2],_Lol,

111 _T1, i i, _Ti| Tozl, “Tol):-

112 checL(€11,-c12,_C21),!,

113 Pr(_N,_Al, Ao, Aol,{_W1,_Cl1,_C12|_Li}, Lo, Lol,
114 [T_wT, PN _Ti),_To,_Tol)., -

1135 p00(Ao, ~Ao2, Lo, _To2, To, To2,[_W2,_C21,_C22]).
ii; P_or ALTAMLT, LiT LIS, 1T, _T1):i~ 1T -

118 p00(_A1{, Ai Li, _Li, T4, Ti,_):-

119 var(_Ai

120 poo([(NT Ahil “at), Ao,[Lh|_Lt],_Lo,

121 Tt],_To,(_W1,_C11,_C12]):- 1,

igg $(N ZAh, Ao, Bol, [TW1,7C11,7C12 _Lh],_Lo,_Lol,_Th,_To,_Tc1),
igg POO(_At,_Aol,_Lt,_Lol,_Tt,_Tol,(_Wl,_Cl1,_Cl2)).
126

127 check(n,ga,vt):
128 check(n,ni,vt):
129 check(n,wo,vt):
130 check(vt,cn,n):

IIII

131

132

133 yclose((),{],[)):- .

134 yclose((_Acar|_Acdr], (_Lcar|_Lcdr], [_Tcar]| _Tcdr}):~ ¢,
135 print('Ai="), print{_Acary,nl,

136 print('Li='),print(_Lcar),nl,

137 print(" Tl-'),prlnt(_Tcar),nl,

igg yclose(_Acdr,_Ledr, Tedr).

140 count pass([], _N):~- 1,

141 print(’pass_num = ') print(_N),nl.
142 count pass((AI _B),_N t,

143 is 1,

144 counc_pass(_B M),

145

146

