564

Regular Paper

Relationship between Lambda Hoisting
and Fully Lazy Lambda Lifting

KencH! Kaneko* and Masato TAKEICHT*

Two algorithms have been proposed for transforming functional programs into ones suitable for fully lazy
evaluation—Lambda hoisting (Takeichi [7]) and fully lazy lambda lifting (Peyton Jones [4]). These algorithms
share similar operations such as floating out local definitions and extracting maximal free occurrences of subex-
pressions to achieve full laziness, while they look different at first sight. This paper investigates these algorithms
in a same framework and shows that the differences lie in the evaluation schemes for the resultant programs. We
conclude that the main part of these algorithms may be considered identical by transforming the lambda

hoisting rules into those for fully lazy lambda lifting.

1. Introduction

First consider an fn-expression:'
fnx: I (fny: y a (+ x 1) whererec a=(+ x 2))

(K (fn z: * z b whererec b=(+ x 3)))
where 1 and K are combinators. This expression is
transformed using fully lazy lambda lifting into a super-
combinator ¥ defined as:

¥ x=1I (®, a(+ x 1) whererec a=+ x 2)
(K (®; b whererec b=+ x 3)) 4))

with auxiliary supercombinators:

$ pgy=ypqand
S, rz=*zr.

On the other hand, by lambda hoisting, we have:
fnx: I (Eny: (yay)K @z (*2d))
whererec a=(+ x 2)
and b=(+ x 3)and y=(+ x1). ()

Comparing (1) and (2), we observe the expressions,
¥, &, a(+ x 1), and &, b, correspond to fn-expres-
sions, fax:I(. .) . .),fny:(yay),andfnz: (* z D),
respectively. The resultant expression (2) differs from
(1) in two points:

e Local definitions are collected into a single

whererec-clause.
« Each maximal free occurrence of a subexpression
is treated as a local definition.

*Department of Mathematical Engineering and Information
Physics, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113, Japan.

Journal of Information Processing, Vol. 15, No. 4, 1992

In Section 2, a simple functional language is introduced
to describe the algorithms. Then we investigate the
reason why these differences appear in Section 3. Fi-
nally we transform the lambda hoisting rules into those
for fully lazy lambda lifting in Section 4.

2. Preliminaries

2.1 A Simple Functional Language

We introduce a simple functional language to provide
a common basis for describing the algorithms. Figure 1
shows a denotational specification of our language. The
reader may wonder why where-clauses are missing in it,
while whererec-clauses are included. In fact, we can im-
plement any local definitions with whererec, but we can-
not with where. We also assume that fn-variables and
locally defined variables are all distinct, and no names
may crash in the course of transformation. In sum-
mary, functional programs written in a language with
more general features are supposed to be transformed
into ones in our language before they are converted into
fully lazy ones.

2.2 Lambda Hoisting

The lambda hoisting algorithm attains full laziness by
transforming an expression in our functional language
into one of more restricted form called the fully lazy
normal form shown in Fig. 2. In the direct consequence
of the context condition, lazy evaluation of arguments
and local definitions brings full laziness.

In order to hoist free occurrences of expressions,
their lexical levels should be calculated. We can deter-

'We use fn instead of A, because we use 4 in semantic explanation.

Relationship between Lambda Hoisting and Fully Lazy Lambda Lifting

Syntactic Domains

be Bas basic values

xe Ide identifiers

ec Exp expressions
Abstract Syntax

e::=blxle elfn x: ele whererec x=e and . . . and x=¢
Semantic Domains

B basic values

E=[B+F], expressible values

F=D—E functions

D=E denotable values

U=Ide—D, environment
Semantic Functions

B: Bas—B (unspecified)

E: Exp—~U—E

E[blp=BI[b]

E[x]p=plx]

Eleye] p=(Ee) p)(Ele)p)
Elfn x: e p=Ad. E[e)(p+<{x—5))

Ele, whererec x,=¢, and . . . and x,=¢,]p=Efe]p’
where p’'=p+<{x,~Ele)p’>+ ... +{x,~Ele)p">
Notations

Operator +stands for the disjoint sum.
For any domain X, X, =X+ {err}.
For an environment p, p+<{x—d) denotes
Ay. if x=y then J else p[y].
Initial Environment
For pre-defined identifiers x, p, satisfies py[x]#err.

Fig. 1 Specification of Our Functional Language.

Syntax
::=e’|e’ whererec x=e¢’ and . . . and x=e’
e'::=blxle’e’Ifnx: e
Context Condition
e contains no free occurrence of compound expressions.

Fig. 2 Fully Lazy Normal Form.

mine whether each subexpression is free or bound in the
expression from its lexical level. Each variable is as-
signed a level number which corresponds to the depth
of nested fn-abstractions. By definition, every basic
value has level number zero. The level number of an ex-
pression is used to find variables on which each subex-
pression depends.

In Hughes [2] approach, only the maximum level
number of the constituent expressions is used for
finding maximal free occurrences of expressions. In
lambda hoisting, we assign every subexpression with a
set of level numbers of its constituents to determine
how many levels the maximal free occurrences of subex-
pressions are hoisted to .

The rule for whererec-clauses is represented by a
recursive equation. There is a not optimal but simple
algorithm to solve it. See Takeichi [5] for details.

We need a definition for maximal free occurrences of
combinations.

Definition (Maximum of a Set of Level Numbers)

For any set of level numbers I={/, b, . . . , [}, max-
imum of the set is denoted by Tl =max{/, L, ...,
In}' |]

Definition (Free Occurrences of Combinations)

565

Level Numbers
leN
Environment for Level Numbers
we L=[lde—N.]
Assignment Rules
L: Exp—L—-N-2V
L[blw!=1{0}
Lix]Jw!={0}H{w[x]}
Lieye Jw!=L[eJw! U Lle,Jw!
Lifn x: ew/=L[e)(w+<{x= I+ D)+ 1)—{I+1}

L[e, whererec x,=e, and . . . and x,=e¢,|Jw/=L[e)w’!
where ' =w+{x, =)+ . .. +<{x,~])>
where /)= |LleJw’ll for i=1, ..., n.
Notation

For an environment w, w+<x—/> denotes
Ay. if x=y then / else w[y].
Initial Environment
For pre-defined identifiers x, w, satisfies w,[x]=0.

Fig. 3 Rules for Assigning Level Numbers.

Declarations of Maximal Free Occurrences of Combinations
e M=[N-2")
de Dec
d::=x=e

Hoisting Rules
H: Exp—~M~—L~N—[Mx L x Exp}

H[bjuwl={p, w, [b]>
Hxlpwl={u, o, [x]>
Hleye uwl=<{u*, v*, e*>
let {u”, 0", e/>=Hl[e,)u'w'l where {u’, @', eg>=H [e}uwl in
if e/(either i=0 or 1) is an MFOC w.r.t. " and /+1,
u*=u" +<koutkU[x'=e 1), w*=w" +{x' k),
and e*=[(x'e})] or e*=[(esx")]
for i=0, 1, respectively,
where k= |L[e;Jw”!| and x’ is a fresh identifier
else u*=u”, w*=w" and e*=(eje))
Hifn x: e uwl=<{u*, o*, [fnx:e*]>
let {pt’, ', efy=Hle(u+<I+ 1= {DNw+<{x=I+1)(I+1) in
if w’(d+1)={} and e} is an MFOC w.r.t. w and /,
ur=p +koukU[x' =e;]), w*=w +<{x' =k,
and e*= {x']
where k= |L[ejJw’ll and x’ is a fresh identifier
else u*=u', w*=w’, and e*= [e; whererec u’(/+1)]
H e, whererec x,=e, and . . . and x,=e,] uw!/=H [e;] u,w.l
where u,=u! +<k;»u'U[x;=e/ > and w;=w] +{x;—~k>
where {u!, w}, e/>=Hle;)y;_ \w;—l and k;=1L[e}] w]l
fori=1,...,n,and gy=n, Wy=w

Notations
Tuples in (M x L x Exp] are written as {u, w, e>.

Syntactic elements are quoted by [and] .

For a declaration set u, u+<k —v) denotes
Aj. if j=k then v else uj

Iful={[x,=e],..., [x,=e,]}, [e whererec ul] denotes
[e, whererec x,=e, and . . . and x,=¢,]

Initial Set of Declarations
The initial set of declarations u, satisfies u,/={} for any /e N.

Fig. 4 Lambda Hoisting Rules.

declarations

An occurrence of an expression of the form (e, e)) is
called a free occurrence with respect to we L and /e N,
if O<liL[eJwl!l <!, O0<l|Lle]jw!| <!, and |L[ese]
wl | #0 hold. a

Definition (Maximal Free Occurrences of Combinat-
ions)
A free occurrence of a combination e*=(e, e,) with

566

respect to we L and /e N is called maximal, if either of
the following conditions holds.
1) There is an occurrence of a combination contain-
ing e* as (e’ e*) or (e* e’), and

| Lle*wl| < | Lle’wl

holds.
2) The occurrence e* appears as either

fn x: e*,
e* whererec x,=¢, and . . . and x,=e,, or

x;=e* in a whererec-clause.]

Now an expression e is transformed into (e* whererec
4*0) in the fully lazy normal form by the lambda
hoisting rules:

<u*, w*, e*>=Hlel usw,.

2.3 Fully Lazy Lambda Lifting

We follow the description of fully lazy lambda lifting
in Peyton Jones [4]. However, the algorithm is
simplified for brevity in this paper.

We show how an expression in our functional
language is transformed by fully lazy lambda lifting
into declarations of supercombinators. Full laziness is
achieved by floating local definitions outwards and by
abstracting maximal free occurrences of expressions us-
ing supercombinators. Thus the algorithm breaks into
two phases. It floats out the local definitions as far as
possible in the first phase, it detects and abstracts the
maximal free occurrences of expressions in the second
phase. This approach differs from Peyton Jones [6]
where these operations are performed in reverse order.

The definitions for maximal free occurrences of ex-
pressions and supercombinators follow:

Definition (Free Occurrences of Expressions)
An expression e is called free with respect to we L
and /e N, if 0=<{L[e]w!/| <!/ holds. u

Definition (Maximal Free Occurrences of Expressions)

A free occurrence of an expression e* with respect to
we L and /e N is called maximal, if either of the follow-
ing conditions holds.

1) There is an occurrence of a combination contain-
ing e* as (e’ e*) or (e* e’), and |L[e'lw!l =1
holds.

2) The expression e* appears as either

fn x: e*,
e* whererec x,=¢; and . . . and x,=e,, or
x;=e* in a whererec-clause. []

Definition (Supercombinators)

An expression e which has no free variable is called a
supercombinator, if e is in the form of fn x;: fnx;: . . .
fn x,: e’, and e’ does not contain any lambda abstrac-
tion which is not a supercombinator.]

K. KANEKO and M. TAKEICHI

Floating Rules
F: Exp—~M—L—N—[M x L x Exp]
Fbluwl={y, w, [6]>
Flxlpwl={y, o, [x]>
Flese) pwl=<{p*, *, e*>
let ', w’, egy=Fle) uwl in
e*=[(eseD]
where {(u*, w*, e>=Fle,Ju’'w’'l
Flfn x: e uwl=<{u*, 0*, [fax:el]>
where ef = [e; whererec u*(I+1)]
where {u*, w*, e;)
=Fle(u+<I+ 1= {DNw+ x> 1+ D)I+1)
F e, whererec x,=e, and . . . and x,=e,) uw!/=F[eJu,w,l
where p;=p; +<k—u'kU{ [x;=¢/]}> and w;=w] +{x;=k>
where {y/, o/, e/>=F[e]u;~\w;_,l and k= |L[e{lw;!|
fori=1,...,n, and yy=u, wy=w

Fig. 5 Floating Rules for Local Definitions.

Abstracting Rules
A: Exp—~M—-L—N—[MxL x Exp]
A uwl=<{u, w, [b]>
AlX)pwi={p, o, [x]>
Aleye) pwi=<{u*, o*, e*>
let {u’, w’, e{d>=A[e)) uwl in
let {u”, w”, epy)=AleJu’w’l in
if e/ (either i=0 or 1) is an MFOC w.r.t. @” and /+1,
ur=p" +<k-oumkUx =€}, 0*=w" +<{x’+k,
and e*= [(x’e))] or e*= [(ejx’)]
for i=0, 1, respectively,
where k= |L[eJw”!| and x" is a fresh identifier
else u* =", w*=w" and e*=[(ee])]
Alfn x: e uwl={u*, w*, [fnx:e*])
let {u’, w’, e6>=A[eo](,u+(l+l—’{}>)(w+<x—’1+l>)(1+l) in
if u'(/+1)={} and e} is an MFOC w.r.t. ' and /,
u*=p' +<k~u'kUx =ef]),
w*=w' +{x'=k), and e*= [x']
where k= |L[eglw’l| and x’ is a fresh identifier
else u*=p', w*=w’, and e*= [e; whererec u’(I+1)]
Ale, whererec x,=e, and . . . and x,=e,) uw!=<{u*, w*, e3>
where e =[e; whererec x,=¢] and . . . and x,=e; and u*/]
where {u*, w*, ef>=Ale) u,w,l
where {y, w, e/>=Ale] ui_ wi_,!
fori=1, ..., nand yj=u, wi=w

Fig. 6 Abstracting Rules for MFOCs.

The algorithm for floating out local definitions is as

follows:

1) For each local definition, we compute the level
number of the defined variable by computing its
definition body. This level number identifies the
innermost fn-abstraction on which the definition
depends.

2) The definition then be floated out until the
nearest enclosing fn-abstraction of which level is
the level number of the definition.

3) If the definition appears in the function position
of an application, it is floated out until it does
not.

Identifying maximal free occurrences of expressions
is performed in a single tree walk over the expression:
1) On the way down the tree, the level number of

Relationship between Lambda Hoisting and Fully Lazy Lambda Lifting

Floating Rules
F’: Exp—L—~N—[M x L x Exp]
F'[blwl={u,, @, [b]>
F'[xlol={uy, @, [x]>
FleseJol=<{u*, w*, e*>
let {u’, w’, ep>=F’[e]wl in
ur=p +(u” +<—{}>) and e* = [(ej(e] whererec u'l))]
where {u”, w*, e>=F'[e,Jw’!
F’[fn x: eJol={u*, o*, [x:ef]>
where e)= [e; whererec u*(/+1)]
where {u*, w*, efd=F'[eJ(w+<{x=I+1D)(I+1)
F’[e, whererec x,=e, and . . . and x,=¢,Jw/=<{u*, w*, %>

wr=pi+ D) (u) + <k~ {x;= [e] whererec u/k;]1}))
=1

where {u3, w*, ef>=F'[eJw,!
where {u/,], e/>=F'[e]w/_ k;
fori=1, ..., nand w{=w, k;=|L[e]wl!!
Notation
For any environments u, and u,, u, +u, denotes Al. (u,Mu,!).

Fig. 7 Revised Floating Rules for Local Definitions.

Declaration of Supercombinators
oeS
s=§
su=®x...x=e
Abstracting Rules
A’: Exp—>M—L—-N-8-[MxL xExp xS}
A’'Buwlo={u, w, [b], o>
A'[x)uwle={p, w, [x], o>
A'lepeluwle={u*, w*, e*, o%)
let {u', w', ef, a’>=A’[e,] pwlio in
if e/ (either i=0 or 1) is an MFOE w.r.t. @” and /,
if there exists k such that [x'=e/] e u”"k
u*=p", w*=w", and e*= [(x'e])] or e*= [(egx")]
for i=0, 1, respectively,
else u*=u" +<k—u"kU [x'=e/], o*=w" +{x' =k,
and e*= [(x’e])] or e*=[(ejx")]
for i=0, 1, respectively,
where k=1L[e/]w”!| and x’ is a fresh identifier
else u*=u", w*=w" and e*= {(eje})]
where {u”, w”, e}, 0*>=A’le, |y’ w'lo’
A'[fn x: e) pwlo=A’[ed) pwic*
let {p', @', e}y ">=A"leg) {}(w+<{x=1+ 1))+ 1) in
if eq is an MFOE w.r.t. @’ and /+1,
w*=w +{30), e = [Pef]
and o*=g'U{ [&x'x=x"]}
where ¢ and x’ are fresh identifiers
else w*=w’ +{D0), ef = [Def . . . €y - -€h .. .01
and a*=a"U[®xf) . . . Xfp o o - X4y o+« XpX =04
where & is a fresh identifier
and wkis { [xi=ej], ..., [Xin=€bn]}
A’[e, whererec x,=e, and . . . and x,=e,| uwlo={u*, w*, ef, o)
where ey = [e; whererec x,=e{ and ... and x,=¢;]
where {u*, w*, e}, a*>=A’[e)u,w,lo;
where {u;, w!, e/, a/>=A'le]ul_ \w/_la].,
for i=1, ..., nand yj=u, wg=w, 64=0
Fig. 8 Revised Abstracting Rules for MFOEs.

each fn-variable is recorded.

2) On the way up, the level of each expression is
computed, using the environment and the level
of its subexpressions. If an expression turns out
to be a maximal free occurrence of an expres-
sion, it is given a new fresh identifier.

3) When an fn-abstraction is encountered on the

567

way up, it is transformed into a supercom-
binator, and the fn-abstraction is replaced by the
supercombinator applied to maximal free occur-
rences of expressions in it.

3. Differences of the Algorithms

3.1 Local Definitions

Both algorithms allow local definitions in the source
language. The algorithms float out the definitions as
high as possible subject to the binding scope rule to at-
tain full laziness. One of the difference is that after
floating out the local definitions, lambda hoisting col-
lects local definitions of the same level, while fully lazy
lambda lifting leaves them separated. This difference
originates from the difference of implementation
schemes. That is, lambda hoisting adopts the environ-
ment model such as the SECD machine for evaluation.
For example, we extract the local definitions in an ex-
pression

G (..

X ...) whererecx=E)...y...)

whererec y=F,
to get the hoisted expression
GC..C..x..)...y..)

whererec x=F and y=F.

The environment is updated only once when the expres-
sion is evaluated. In an actual implementation, each
local definition is represented by a closure which is a
pair consisting of a pointer to the code for the definition
body and a pointer to an environment under which the
code is executed. So unnecessary memory consumption
is very little even if the variables x and y are not used in
evaluation. In lambda hoisting, we should collect the
local definitions so that we can avoid frequent update
of the environment.

Fully lazy lambda lifting adopts graph reduction
model based on recursive supercombinators. If we col-
lect local definitions in an expression following the rules
of lambda hoisting

IFB((...x...)whererec x=E)
((...y...)whererec y=F),

we get
IFB(G..x...)(..

When we evaluate this expression in graph reduction,
we must always make two graphs for F and F regardless
the evaluation result of the expression B. In fully lazy
lambda lifting, therefore, we should float out local
definitions no further than is necessary so that we can
avoid constructing unnecessary graphs. Another ver-
sion of fully lazy lambda lifter (Peyton Jones [6]) loses
this property. In fact, the program in the version pro-

y ...)whererec x=F and y=F.

568

Lifting Rules
L’: Exp—M—~L—~+N-S—[MxM x L x Exp x §]
L'[blvwlo={u,, v, w, [b], o>
L'[xvwlo={p,, v, w, [x], >
L'[eseJvwlo=<{u*, v*, w*, e* o*)
let ', v', @', g, 6'>=L’[e]vwla in
ur=u +(um U= D),
if e/ (either i=0 or 1) is an MFOE w.r.t. w” and /,
if there exists k such that {x'=e/] e vk
v*=v", w*=w", and e*= [(x'(e] whererec u"/))]
or e*=[(ejx’)] for i=0, 1, respectively
else V¥ =v" +<k v kU{ [x' =€/ 1D, 0*=w" +{x' =k,
and e*= [(x'(e; whererec u"1))] or e*=[(esx’)]
for i=0, 1, respectively,
where k= |L[e/]w”!l and x’ is a fresh identifier
else v*=v", w*=w" and e*= [(ej(e] whererec u"1))]
where {u”, v*, ", e}, a*>=L’[e,v' w’lc’
L'[fn x: e)Jvwloa={u*, v*, w*, ef, a*)
let ', V', @', 4, ' >=L’[eg]vg(@+{x—I+ 1))+ 1)o in
ur=w
where {u”, v*, w*, ef, a*>=L’[e{lv,w"lc"
where if eg is an MFOE w.r.t. w’ and /+1,
" =w +{3-0), el = [(Peg)] ,
and 6" =¢’U{ [®x'x=x"]}
else w” =w’' +<{®—-0),
ef=1[(Pey ... €. .-€h...n1
and 6" =" U{ [®x{, . . . Xfuo -« - Xh - - - Xin
=e; whererec u’'(/+1)] }
where ® is a fresh identifier
and vk is { [xp=ey] ... [Xin=€tn]}
L'[e, whererec x,=e, and . . . and x,=e,]vwlo
={u*, v¥, ¥, e, o>
where u* =pi+] (uf +<ki—{ [x;=e] whererec u k] }>)
=1

where {uj, v*, w*, ef, a*>=L'[e)|v,w,lc]
where {y/, v/, w/, e/, a/>=L'le,]v/- ,w]_, k;o{_,
for i=1, ..., nand gi=u, wi=w, oj=0c, k;=|L[e;Jwl |

Fig. 9 Fully Lazy Lambda Lifting Rules.

duces a similar result as one by lambda hoisting, which
may not be suitable for graph reduction.

3.2 Maximal Free Occurrences

For full laziness, both algorithms must detect the
maximal free occurrences of subexpressions to abstract
them. The major difference lies in the applying tech-
nique. This also derives from the difference of im-
plementation schemes. The fully lazy lambda lifting
transforms the expression

E=(..E...E..)

(where E| and E; are all the maximal free occurrences of
subexpressions in F) into the expression

.. X2. .))E| E;y. 3

At the final stage, it compiles (fn x; x2: (. . . x1 ... X2
. . .)) into a supercombinator, say ¥, and whole expres-
sion is replaced by ¥ E, E,.

In lambda hoisting, the result E[x/e] of the reduc-
tion of an application ((fn x: E)e) is equivalent to the ex-
pression (E whererec x=¢). Hence, we can proceed to
transform the expression (3) into

(fl'l X1 X2 (.o X1

K. KANEKO and M. TAKEICH!

(...x1...x2...)whererec x,=F, and x;=E,.

After this, the maximal free occurrences of subexpres-
sions can be treated as if they were originally declared in
a whererec-clause.

In case that the maximal free occurrence of subexpres-
sion Eyin (. . . E; . . .)is a variable, even if the lambda
hoisting transforms (. . . E, . . .) into

(... x ...) whererec x,=E,,

when (. . . x, . . .) is evaluated, the whole environment
becomes

whererec x,=F,and . . . and E,=FE, and . . .

Therefore it is redundant to replace the variable E; with
a fresh identifier x;. Thus lambda hoisting does not
abstract maximal free occurrences of variables. This is
one of the reasons that the lambda hoisting treats max-
imal free occurrences of combinations rather than ex-
pressions.

4. Transformation

We now redefine the rules for fully lazy lambda lif-
ting by transforming the lambda hoisting rules taking
account of the differences described in the previous sec-
tions. We first divide the lambda hoisting rules into two
sets of rules. The first is the floating rules shown in Fig.
5 which float out the local definitions as high as possi-
ble, and the second, the abstracting rules shown in Fig.
6 which detect the maximal free occurrences of combina-
tions and abstract them using local definitions. Note
that original rules are equivalent to

{u*, w*, e*>=Ale’ whererec u’0] usws0
where {u’, w’, e'>=F[e] u,w,0.

Then we revise each set of rules to match fully lazy
lambda lifting. They are shown in Fig. 7 and Fig. 8.
Fully lazy lambda lifting floats out local definitions
separately for each constituent of combinations and
each body of local definitions. Therefore, u is not
passed as argument. In addition, new whererec-clauses
appear as return values of expression in Fig. 7, because
we must not float out the local definitions further than
necessity as mentioned in the latter part of Section 3.1.

Fully lazy lambda lifting transforms fn-expressions
into supercombinators. Hence we need to introduce o
to accumulate those definitions. In defining supercom-
binators, we decide the order of parameters according
to Hughes [2].

Fully lazy lambda lifting abstracts a maximal free oc-
currence of a single variable. Thus it would occur that
several parameters represent a same variable without
checking it. So it behooves us to eliminate the redun-
dant introduction of parameters.

Finally, we can combine the revised rules for floating
and abstracting operations to make the fully lazy lamb-
da lifting rules shown in Fig. 9 which uses two en-

Relationship between Lambda Hoisting and Fully Lazy Lambda Lifting

vironments, # and v, to treat the declarations of local
definitions and those of the maximal free occurrences of
expressions separately.

5. Conclusions

We have shown that the two algorithms are very
similar in that their basic operations divide into two
phases. This idea is very similar to Peyton Jones [6],
while its purpose is different. The local definitions are
floated out in the first one, and the maximal free occur-
rences of subexpressions are detected and treated
specially in the second one. The differences of the
algorithms come from the difference of implementation
schemes.

The difference in the floating out operation is due to
the fact that fully lazy lambda lifting implements a local
definitions as a graph, while lambda hoisting does it as a
closure.

Another difference has been observed. Fully lazy
lambda lifting abstracts all the maximal free occur-
rences of expressions including single variables to
transform fn-expressions into supercombinators. Since
lambda hoisting is based on environment model im-
plementation, it is unnecessary to abstract maximal free
occurrences of variables.

In addition, we have shown that it is possible to con-
struct the fully lazy lambda lifting rules by transform-
ing those for the lambda hoisting step by step. This
means that there exist other feasible algorithms between
the algorithms. More generally, we may say that there
exist other feasible models between the graph reduction
one and the environment one.

569

There is a pure graph reduction model such as Turner
[8)’s implementation technique. On the other hand,
there is an environment model such as SECD machine.
The suitable model for fully lazy lambda lifting is an in-
termediate one placed between these models. The recent
implementations of graph reduction models try to sup-
press construction of graphs (Augustsson [1], Peyton
Jones [5]). They use graphs to represent local defini-
tions and frames which may be thought as the environ-
ment, to execute the compiled supercombinators.
Therefore, we conclude that we are free to adopt the
translation algorithm according to the actual implemen-
tation scheme on the target machine.

References

1. AucusTssoN, L. and JoHNnssoN, T. Parallel Graph Reduction
with the {v, G)-machine, Proceedings of the 1989 Conference on
Functional Programming Language and Computer Architecture
(1989), 202-213.

2. HucHEs, R. J. M. Super-combinators: A New Implementation
Method for Applicative Languages, Proceedings of 1982 ACM Sym-
posium on Lisp and Functional Programming (1982), 1-10.

3. JounssoNn, T. Lambda-Lifting: Transformation Programs to
Recursive Equations, Lecture Notes in Computer Science 201, Spr-
inger-Verlag (1985), 190-203.

4. PEYTON JONES, S. L. The Implementation of Functional Program-
ming Languages, Prentice-Hall International, 1987.

5. PEYTON JONES, S. L. The Spineless Tagless G-Machine, Pro-
ceedings of the 1989 Conference on Functional Programming
Languages and Computer Architecture (1989), 184-201.

6. PEYTON JONES, S. L. and LESTER, D. R. A Modular, Fully Lazy
Lambda Lifter in Haskell, Software-Practice and Experience, 21, 5
(1991), 479-506.

7. TakeicHi, M. Lambda-Hoisting: A Transformation Technique
for Fully Lazy Evaluation of Functional Programs, New Generation
Computing, 5 (1988), 377-391.

8. TurneEr, D. A. A New Implementation Technique for Ap-
plicative Languages, Software-Practice and Experience, 9 (1979), 31-
49,

{Received February 3, 1992)

