Regular Paper

545

Abstract Machine Approach to
Operational Semantics of Prolog

TeTSUO IDA*, ATSUSHI NAKAMURA**, Taro Suzuki** and Kol NAKAGAWA***

Operational semantics of Prolog based on abstract Prolog machines is studied. We start from the SLD-resolu-
tion calculus and a simple abstract Prolog machine to realize the SLD-resolution calculus. We then systemati-
cally refine the abstract Prolog machine in three stages; by (1) introduction of continuation, (2) realization of
substitutions on a stack, and (3) speed-up of a backtrack. The resuit of the refinement is the abstract machine
that is amenable to the procedural realization of Prolog. From the refined abstract machine it is straightforward
to develop an algorithm which transforms a Prolog program to an equivalent Scheme program. The Scheme pro-
gram hides certain details of the computation mechanism of Prolog, but clearly exhibits essential control and
data structure for Prolog. Our study has another positive result in that Prolog programs can be run in Scheme

environment.

1. Introduction

One of the objectives of the operational semantics of
a programming language is to prescribe its implementa-
tion. Detailed description of operational semantics will
help to implement language systems. In this respect a
runnable operational semantics is most desirable. In
this paper we are concerned with this aspect of the oper-
ational semantics of Prolog.

Too much detailed description, however, has the dan-
ger of committing the specification of a language to one
particular implementation, and moreover, it sometimes
hinders our abstract reasoning about the semantics of
the language. A declarative language like Prolog
enables us, by virtue of being mathematically well-
founded, to manipulate and reason about programs of
the language in a formal way within the logic and/or a
metalogical system associated with the language.
Hence, we can avoid ‘detailed nonsense’ by a formal
treatment of underlying computation models. We exem-
plify this by systematically refining abstract Prolog
machines.

We take the approach of viewing computation of
Prolog programs as a rewrite process of atoms. We give
several layers of operational semantics, starting with
the SLD-resolution calculus, and concluding at the

Research supported in part by Grants-in-Aid for Scientific
Research No. 03680022 and No. 03235201, the Ministry of Educa-
tion, Science and Culture.

*Institute of Information Sciences and Electronics, University of
Tsukuba.
**Doctoral program in Engineering, University of Tsukuba.

***College of Information Sciences, University of Tsukuba.

Journal of Information Processing, Vol. 15, No. 4, 1992

generation of Scheme programs [9]. In our view Scheme
programs can describe the underlying computing
mechanism of Prolog sufficiently clearly, and further-
more they are runnable on Scheme systems. Thus, the
purpose of this paper is twofold. One is to give opera-
tional semantics of Prolog, which specifies the im-
plementation of Prolog systems. The other is to gener-
ate, from a Prolog program, an equivalent Scheme
program based on the operational semantics.

The operational semantics of Prolog have been given
in several ways. WAM is an example which gives the
semantics of Prolog in terms of an abstract Prolog
machine [12]. Deransart and Ferrand give an operation-
al formal definition of Prolog [5]. Debray and Mishra
discuss the relationship between denotational and opera-
tional semantics of Prolog [4]. Baeton et al. attempt to
give semantics of Prolog via a priority-ordered term
rewriting system [1]. We view computation of Prolog
programs as rewriting of states of abstract Prolog
machines, instead of trying to understand Prolog via
term rewriting systems. To view Prolog programs as a
term rewriting system has an intrinsic difficulty in treat-
ing variables that only appear in the body of program
clauses.

This paper is organized as follows. In section 2 we in-
troduce a simple abstract Prolog machine based on the
SLD-resolution calculus. In section 3 the abstract Pro-
log machine is refined in a formal way. We obtain a
refined abstract Prolog machine with continuation. In
section 4 a method to generate a Scheme program from
a Prolog program is presented.

546

2. An Abstract Prolog Machine

The operational semantics of Prolog is usually given
via the SLD-resolution calculus defined by the follow-
ing inference rule

{—pIUG, {g}UQ
(GUQ)

where G and Q are (possibly empty) sets of negative
atoms', and p and g are atoms that are unifiable by an
mgu (most general unifier) . The expression {—p}UG
represents a goal clause and {q}UQ an input clause.
The calculus captures the behavior of a Prolog inter-
preter in the sense that the computed answer substitu-
tions which the Prolog interpreter delivers are included
with those obtained by the SLD-resolution calculus. In
other words, a Prolog interpreter is a sound implementa-
tion of the SLD-resolution calculus. The calculus itself
does not specify deterministically which input clauses
are to be selected, nor which atoms in the goal are select-
ed for the resolution.

The process of the computation of the SLD-resolu-
tion calculus is seen by rebwriting a set of negative
atoms, i.e. using a relation —, between sets of negative
atoms

Op=6q

{—pIUG 5, 8(GUQ)

where o= {g }UQ. This view is the starting point of the
operational semantics of Prolog based on abstract
machines.

We define the operational semantics of Prolog by an
abstract Prolog machine which replaces the so-called
do-not-know non-determinism inherent in the SLD-
resolution calculus. The abstract Prolog machine oper-
ates on the sequences of atoms, called goals. Since
manipulation of a set is an expensive operation in com-
puting, and furthermore it involves, in general, indeter-
minacy, we replace a set of negative atoms by a se-
quence of atoms. This entails that the order of atoms in
a sequence is significant in the following discussion.
The resulting abstract Prolog machine (to be abbreviat-
ed APM) is an extension of Colmerauer’s abstract Pro-
log machine [3], to a determinate one.

A Prolog program consists of a goal clause and one
or more program clauses. We regard program clauses as
rewrite rules, and a goal clause as a sequence of atoms
which is rewritten by the application of rewrite rules.
For the clarity, we write p>¢q;, n=0 for a pro-
gram clause p:—gqi, . . ., g». An empty sequence is
denoted by &; thus pD>¢ corresponds to program clause
p. Hereafter we call a sequence of atoms simply an
atom sequence. Relation -, where 6 is an mgu as be-
fore and R is a rewrite rule, is redefined as a relation be-
tween goals. Apart from this notational difference, we
use the standard terminology of logic programming as

'We call negated atoms regative atoms in this paper.

T. IpA, A. NaKAMURA, T. Suzuki and K. NAKAGAWA

expounded in [7].

We first give several notions needed to describe
APM. Rewrite rules, which have the same head symbol,
i.e. the predicate symbol in the head (left-hand side) of
rewrite rules, constitute a procedure for that predicate.
Rewrite rules of the same head symbol are priority-
ordered according to the order in which they appear in
the program text. We model this as a partially ordered
set of rewrite rules defined as follows.

Definition 1

Given a Prolog program, let R be a set of rewrite
rules associated with the Prolog program.

(i) Quasi-order = on R is defined as follows; VR;,
R,e R R, R, iff R, and R; have the same head symbol
and the program clause corresponding to R, appears tex-
tually before the program clause corresponding to R; in
the Prolog program.

(ii) Partial order = on R is a union of relations =
and T, where = is the syntactic equality modulo renam-
ing of variables.

For a technical reason that will become apparent
shortly, we assume that the least element 1 and the
greatest element T are included in R. L conceptually
designates the last rewrite rule, and T the first rewrite
rule. (R, C) is thus a complete lattice.

A selection of a rewrite rule during the rewriting of
goals according to the predefined priority necessitates a
backtrack for securing higher chances of successful re-
writing into ¢ (which means successful refutation in reso-
lution terminology, as we will see later). Suppose Q—o*R
Q’, and a backtrack from Q' to Q occurs. To realize
the backtrack, and to enable appropriate choice of an al-
ternative rewrite rule, we essentially need to save Q and
R at each rewrite. Hence, we have the following defini-
tion of a trail.

Definition 2

(i) A rewrite record is a pair of a goal and a rewrite
rule.

(ii) A trail is a sequence of rewrite records.

[Q, R] represents a rewrite record consisting of a
goal Q and a rewrite rule R. Hereafter, we use P and Q
to denote an atom sequence, R to denote a rewrite rule,
and p and q to denote an atom. They may be subscript-
ed. gQ designates a non-empty sequence.

With trail 7, a state of APM is defined as a triple (Q,
R, T). In the sequel we use S to denote a set of states.
An empty sequence of rewrite records is also denoted by
€. A possible confusion between ¢ of an atom sequence
and of a rewrite record sequence should be avoided
from the context. The first component Q of the state is a
goal to be rewritten. The second component R, the can-
didate rewrite rule, is the least upper bound of a subset
of R that consists of the rewrite rules potentially applica-
ble to the rewrite of the leftmost atom of Q.

The candidate rewrite rule R is used in the following
way. Let g be the leftmost atom of Q. Following func-
tion Sel: R X of =R, where & is a set of atoms, selects a

Abstract Machine Approach to Operational Semantics of Prolog

rewrite rule which is less than or equal to (&) R, and
whose head unifies with g:

Sel(R, g)=| | {Xe RIXCR and 6(hd(X))
=0q for some mgu 0}
where hd(X) is the head of a rewrite rule X.

Note that when no rewrite rule X is found in the
above, Sel(R, q)= 1.

In conjunction with Se/(R, q) we use the following
function next: R—R.

R’ ifaR’(R'CRandvXCR,XER')

next(R)= .
1 otherwise

Now we give a formal definition of APM.
Definition 3
An abstract Prolog machine .# is defined as a triple
(R, s0, 0), where R, s, and o are as follows.
* R is a complete lattice of rewrite rules.
* so=(Qo, T, €)is an initial state, where Q, is an ini-

tial goal.
¢ g: S—S s a state transition function defined below:
ol(e, R, T)I1=(¢ R, T) 1)

al(qQ, R, D1=(6(PQ), T, TlqQ, R']
if Sel(R, q)=R’(=p>P) (2)
where @ is an mgu such that 6g=6p
ol(@Q, R, TIQ’, R'D1=(Q", next(R’), T)
if Sel(R,g)=1 (3)
ol(gQ, R, &)1=@Q, R, &) ifSel(R,q)=1 (4)

We assume that whenever a rewrite rule is used for
the state transition, namely in equation (2), a new vari-
ant of a rewrite rule is always taken, so that no variable
name conflict occurs between those of goals and of a re-
write rule.

It is easy to see that o: S—S defined by equations (1)
~(4) is indeed a function. Hence APM is a determinate
machine.

We write (Q, R, T)—(Q’, T, T') when equation (2)
is used for the state transition from (Q, R, T) to (Q’,
T, T’), and (@Q, R, T[Q’, R')=(Q’, R’, T) when
equation (3) is used. The latter state transition is a back-
track. We let ~> =—-+U< and let ~>* be a reflexive and
transitive closure of ~>. Note that ~>* contains the
identity relations defined in equations (1) and (4).

APM .# is said to halt if its state is a fixed point of .
The fixed points of o are (¢, R, T) and (¢Q, R, ¢€) such
that Sel(R, q)= 1, as is easily seen from equations (1)
and (4). The fixed points are also called final states. We
call a state transition path leading to the fixed points
trace (generated by ~>) and the number of ~> in the
trace length of the trace. When .# halts we have either
of the following two traces:

i) (Qo, T, &)~>*e, Ry, Ty, or

(i-l) (QO’ T, 8)’\>*(QQ, Rm 3)

547

In case (i) the rewriting of Qy is said to be successful,
and in case (ii) the rewriting of Q, unsuccessful.
Example 1

Let R={ T,
R': pbaa,,
R% a,Db,
R%: aDe,
R*: a;le,
1}
where p, a,, a; and b are ground atoms.

(o, 7, &~>(@a, T, [p, R")
=(bay, 7, [P, R'l[aia2, R?))
“(aaz, R’, [p, R'))
=(a, T, [p, R'Nlaias, R*))
=@, T, [P, Rlla:a:, R*|[a:, RY)

The following proposition links APM and the SLD-
resolution calculus.
Proposition 1 Suppose

(Qo, Ro, T)~>*(g, R,y T, &)
where
T,=TyQo, RJ[Q:, Ri]. . [0, R, 0<io<ir<. . .<ir<n.

Then, Qo, Qi, . . ., Q,, € is a refutation derivation of
Qo. Here goals Qj, je {0, i, . . ., i} are interpreted as
a disjunction of negative atoms, and ¢ as an empty
clause.

The proposition can be proved easily by the induction
on the number of backtracks in the trace (5).

In particular, when Ro= 7 and T,=¢, the proposition
assures the soundness of APM with respect to the SLD-
resolution calculus. Therefore in the case of refutation,
we can extract from the trail the sequence of rewrites

Q= Qi= - >0,

which is what we want from the computation on APM.
3. Refinement of the Abstract Prolog Machine

APM is transformed to a machine which represents
more faithfully abstract Prolog machines used in the im-
plementation of Prolog systems. We are going to refine
the APM in the following ways; (i) introduction of con-
tinuation, (ii) machine-oriented representation of substi-
tutions, and (iii) speed-up of a backtrack.

3.1 Segment of Atom Sequences and Continuation

The first idea to this end is to partition an atom se-
quence into subsequences, called segrments, of atoms.
For example, an atom sequence qoq; . . . ¢x may be
represented as

548

g0 qllgi+i..-ql...[qi+1-..ql]

where g;,= go and g, = ¢g,. The subsequences enclosed by
[and] are segments of the atom sequence. Atoms within
the same segment come from the same body (i.e. the
variant of the right-hand side) of a rewrite rule. Sup-
pose we have an atom sequence

[gQollQ1] . . . [Qd]

which is rewritten by p > P with an mgu 8, we have the
following rewrite.

[9QollQ1] - - . [Q—O(PIG[Q1] - . . [QeD)

The reason for the segmented representation of atom
sequences is that atoms in a body are treated as a whole
in the implementation of Prolog systems rather than
concatenated in front of the remaining goal. Logically,
a segmented atom sequence and corresponding non-seg-
mented one have the same meaning.

Suppose we have an ordered subset of rewrite rules
X={p\DP,, ..., p.D>P,} where each rewrite rule has
the same head symbol, say p. According to the usual
procedural interpretation of Prolog, X is compiled into
the procedure p and the atoms in the bodies are consi-
dered as procedure calls.

Thus, a rewrite sequence

[9Qal(Q1] - . . [Qd =6 PQo] - - . [Qi]
=*0'((Qo] - - - [Q)

is interpreted procedurally as follows:

1. g is a procedure call to p.

2. Pis the body of procedure p. All the atoms in P

are then processed.

3. Next, Qy is processed.

For a call to procedure p from [gQo], the segments
[Qd] . . . [Qx] are called the continuation of the call of p,
since when [P] has been processed, the rewrite con-
tinues on [Qy] . . . [Qk].

During rewriting, the focus of attention is always on
the first segment of the atom sequence. Therefore, the
atom sequence can be split into two parts; one is the
first segment and the other is the continuation.

3.2 Manipulation of Substitution

The second idea is to separate mgus from goals. Ap-
plying an mgu to a goal in order to create a new goal is
an expensive operation in Prolog systems. Therefore a
pair consisting of the mgu and the goal is used instead.
When we write 8(PQ), for example, 8(PQ) is not
meant to be a result of the application of 8 to PQ, but a
pair (6, PQ) hereafter.

Since notations concerning substitutions differ slight-
ly among authors, we summarize here our notations
used in the sequel:

* ¥"(a), where « is any syntactic object, is the set of
variables in «.
A substitution 8 is represented as a set {#,/x, . . . ,

T. IDA, A. NAKAMURA, T. Suzuki and K. NAKAGAWA

t./x.}, where ti/x;, i=1, ..., nis a binding of a
variable x; to a term ¢;. By definition, x;#¢, i=1, . .
., n. For this 6, its domain 2(6) and codomain
€2(0) are defined as follows:

9(€)={X|, LA] xn}
€2(0)=Uv (1)
* 9| V is a substitution whose domain is restricted to
V,i.e.,
0(x) xeV
AlV(x)=) .
X otherwise

¢ The composition of 8, with 6., i.e. 6x(6:(x)), is writ-
ten simply as 6:0:(x). 6,6, in the set representation
is

0 {0:s/x|s/xe 0.})—{6s/x|s=x, s/xe 6,}

—{s/xe 6:1xe 2 (6))}.
Suppose we have a refutation:

Qo—rg, QIR E, Mk ©)

where u;=60;u;—, i=1, ..., nand uy==¢.
At the i-th step
Hi-1@Q -)= i1 Qi-1) = % i iy
we have ;u;-1q=6,p; where R;=p;>P;, and Q;=P;Q/

since, because of 2(u;-1)"W (R)=¢, the following
holds:

(aipi)(ailli—lQi'—l)=(0flli~lPi)(0illi—1Qi'~1)
=u;(PQ-1).

Therefore atoms in Q,, i=1, ..., n—1, are either
atoms in Q, or variants of atoms of the right-hand side
of rewrite rules R;, i=1, ..., n—1. It is these 6;s and
/s that are computed during the refutation.

In the standard implementation of Prolog systems,
the unification algorithm is designed to generate mgus
that have the following properties:

(i) For any variable renaming binding y/x,

y/xe i=ye ¥ (Ui-1Qi-1).

(ii) Mgus are idempotent, i.e. for any mgu 6;,

20X E€D(0)=9.

We also note that

y(RIW(RJ):¢a I¢J: i! je {11 I] n}

since R;s are new variants of rewrite rules.

Then, we have the following proposition concerning
the substitutions that are generated in the refutation (6).
Proposition 2 Let

8 [} (A
Qo= g, Q1 R, * R, HnE)

be a refutation, where ui==0u;-,, i=1,...,n and
m=¢and 6, i=1, . . ., n, satisfy properties (i) and (ii).
Then, for i=1, ..., n, we have

Abstract Machine Approach to Operational Semantics of Prolog

@ 20)ND(u-1)=9¢,
(b) w=00M{6it/x\t/xe mi_1}, ®
(c) wuiis idempotent.
The proof is given in the appendix.
Let ui—1={t;/x;\je Ji-1} and 46,=6,1 J ¥'(¢),

j€ T
and we write
A0 i1 ={46:t;/ x;\je Ji-1}.
Then, from equations (8), we have
wi=6,Ua0;-pi-1. ()]

With this preparation in mind, let us consider the
case of a backtrack.

(ux-1@Q), T, T)=Octte—(PQ), T,
Tlme-1(9Q), R])

< (ur-1(gQ), next(R), T)

What is involved here is the recovery of uc- from
(= 8cpix-1). To recover i, from u, we use equation
(9). Namely, subtract 6, from g, and replace the sub-
terms introduced by A6, by the original variables. The
information needed for the recovery of ux— from
A px— is denoted by 46;'. Discussion on how to
represent A6 ' is postponed until section 4. We call
A0; " a variable trail. The word trail was originally used
to refer to a stack in order to keep track of the addresses
of certain variables in the goal that are instantiated by
unification. It corresponds to the variable trails in our
case.

3.3 Abstract Prolog Machine with Continuation

We are now ready to give a new machine to be called
APM-C (Abstract Prolog Machine with Continuation)
M c. A state of # ¢ is a quadruple (Q, R, T, C), where
Q, R, T and C are a goal, an applicable rule, a trail,
and a continuation respectively.

Definition 4 An abstract Prolog machine with continua-
tion, .# ¢, is defined as triple (R, so, 0¢), where R, so and
oc are as follows.

« R is a complete lattice of rewrite rules as in defini-

tion 3.

* so=(Qo, T, &, €)is an initial state, where Qo is an in-
itial goal.

» gc: S—S is a state transition function defined be-
low:

aC[(£9 R’ T’ E)]] =(€, R’ T’ 8) (10)

acl@Q, R, T, C)1=(6P, 7, TI(CIg2D,
next(R’), 467"1, 6CIQ]) (1)
if Sel(R, g)=R’'(=pD>P)
where @ is an mgu such that 6g=06p
ocle, R, T, CIQDI=(Q, R, T, C) 12)

549

ocl@Q, R, TIHC'IQ’]), R’, 467'], O)]
=(Q',R', T, C) if Sel(R, ¢)=L (13)

aC[(qQ’ Rr &, 8)]' =(qu Rs &, 8)
if Sel(R, g)=1 (14)

In equation (13), A0 is used to recover C’ and Q"
from 6(C’[Q ']), although its operation is implicit in the
state transition. As in APM, we use « for the state tran-
sition of a backtrack defined by equation (13). In the
case of the state transitions defined by equations (11)
and (12), we use —; and —,, respectively. Note again
that oc is a function.

Example 2

We use the same set of rewrite rules R as in Example

1.

@, 7,8 &)~ (aa, T, ([P], L, 9], 8)
=, (B, T, tillaal], R?, ¢, (@]
where t,={[p], L1, ¢]
o (aim, R, 4, €)
=i & T, tllaal, L,], [a])
=3 (a2, T, bt &)
where ,=[[a1a.], L, ¢]
=1 (e T, Ltlal), L, &), &)
Here, ¢(of 407" is an empty substitution.

Note that the state transition generated by —,is an ad-
ditional transition compared with the case of APM. It
roughly corresponds to procedure return.

We call #¢ and # equivalent if both generate the
same refutation derivation. That .#¢ and .# with the
same initial goal are equivalent can easily be seen by the
following reasoning:

1. Let =~=(—;° —~)U—,, where we regard the tran-
sitions as relations defining sets <8 xS. Our in-
tention here is to combine the transitions of —=,
immediately followed by — into a single step of
a transition. Let ~> =—U<~ as in APM.

2. We compare traces of .# and .#¢ generated by
~>.

3. We observe that the lengths of the traces are the
same, and that for state s;=(Q, R, T, C) of #¢
and state s/=(Q’, R’, T’) of .# of the corre-
sponding state in the trace, Q(rev(C))=Q’
holds, where rev([Qi]IQ:] . . . [Q:D=Cn. ..
0.

3.4 Repeated Backtrack

At this point, we summarize the planned changes
from APM.
e Continuation is added to the state.
o The trail record consists of three items: previous
goal, next applicable rule (instead of applied) and
variable trail. The next applicable rule is computed

550

and stored in the trail, since the next applicable
rule has to be computed, after all, from the applied
rule at the time of a backtrack.

¢ The variable trail is added to recover a substitution

at the time of a backtrack.

One more refinement is necessary in order to make
the behavior of APM-C closer to that of Scheme pro-
grams generated from Prolog programs. In a standard
implementation of Prolog systems repeated backtracks

SiOSit1 S ... o8
where

5x=(Qx, Re, TdQL L, 465, C), k=i, ..., j—2
and s;=(Qj, R, TAQ/, R}, 46"}, C)), where R;# L

can be realized as a single backtrack. This can be formal-
ized by modifying the definition o¢ of equation (13).
Namely, the new definition of equation (13) is

ocl@Q, R, TIH(C'[Q']), R’, 467'], O)]
=repeat_backtrack[(Q', R’, T, C')]
if Sel(R, ¢)=1 (15)
where

repeat_backtrack [(qQ, L, T[(C’IQ']),R’, 407", O)]
=repeat_backtrack[(Q’, R', T, C’)]

repeat_backtrack (Q, R, T, C)I=(Q, R, T, C)
otherwise.

A state transition s; to s; using equation (15) is denot-
ed by s; <4 s;.

4. Translation of Prolog to Scheme

4.1 Transformation to a Homogeneous Form

APM-C makes explicit the computing resources neces-
sary to execute Prolog programs, i.e. trail and continua-
tion. We further need to refine APM-C in order to map
those resources to actual resources of computers. The
refinement in this section is based on program transfor-
mations.

We first introduce a homogeneous form of Prolog
programs [10]. A homogeneous form of a Prolog pro-
gram (in a rewrite rule form) p(#;, . . . , t,)>Pis

p(x1, . . ., X)Dunify(x,) - -unify(x,, ¢,)P

where x;, . . ., x, are distinct fresh variables. Predicate
unify(s, ¢) is a special predicate which unifies s and ¢ if
unifiable. We transform all rewrite rules in R to their
homogeneous forms.

The reason for adopting homogeneous rewrite rules
is that the unification of parameters of the heads is dealt
with in the body of the rewrite rules. Then with the set
of homogeneous rewrite rules, the unification between
the head of a rewrite rule and an atom of a goal is suc-
cessful iff the predicate symbol of the atom and the
head symbol of the rewrite rule is the same.

T. IDA, A. NAKAMURA, T. Suzuki and K. NAKAGAWA

4.2 Revised State Transition Function

Homogeneous rewrite rules enable us to simplify
APM-C further. Let us give an example to see how
APM-C can be simplified. Suppose that R is a set of
homogeneous rewrite rules, and that we have a follow-
ing rewrite sequence:

@Q, R, T, C)
=16, P, T, T6:(C[gQ]), next(R)), 4671, 6:(C[Q1))
(where R,=Sel(R, q), Ri=p,>P,e R and 6,g=6,p)
~>*Q',R', T, C)
<> (@Q, R, T, C) (where R,=next(R)))
=1(8:Py, T, T[6:C[gQ)), next(Ry), 4651, 6CIQD)
(where R;=p,>P,e R and 6.q=06,p,)

Note that R;# L by the definition of < . When
APM-C backtracks from state (Q’, R’, T', C’) to
state (qQ, R,, T, C), there is actually no need to com-
pute Se/(R,, q) since g always unifies with the head p,
of R, because of the homogeneity of R,. The state (gQ,
R;, T, C) can be skipped in the rewrite sequence. This
can be realized formally by combining <+ and —, to
form the composition —=; o <~ , Let </ =— ;0 < |
and we call <&’ quick backtrack.

More generally, for a given rewrite sequence s;~>'s,
~>»’..-~>"'s, where ~>’ denote either = —; or <& ,
we eliminate all the s/’s that satisfy s;_; < 5,—18i+1, and
write §i-) <+'s;+; instead. It is easily seen that in the
thus obtained rewriting sequence the second component
of all the states is T. This suggests that we can obviate
the second component of the state and simplify the state
transition function ac.

Following is the new and final definition of the state
transition function a¢. We let Sel'(g)=Sel(T, q).

[Halt with success]
ocle, T,)1 =(, T, €) (16)

[Call a goal]

ocl(@@, T, O]
=(6P, TI6(C[gQ)), next(R’), 4671, ACIQ])

an
if Sel’(q)=R’(=p>P)
where 6 is an mgu such that 6g=6p
[Return]
acle, T, CI2NI=(Q, T, ©) (18
[Quick-backtrack]

ocl@Q, T1, O)]

=repeat_backtrack [(qQ, Tt, C)]
if Sel'(g)= 1 19)
[Halt with failure]

Abstract Machine Approach to Operational Semantics of Prolog

ocl(qQ, &,)1 =(qQ, ¢, €) (20)
if Sel’(q)= 1

We have to redefine repeat_backtrack for the revised
states. The new definition of repeat_backtrack is

repeat_backtrack [(gQ, T[6(C'[Q’]), L,467'], C)]
=repeat_backtrack [(Q’, T, C')]
repeat_backtrack [(qQ, T[0(C'[Q']), R’, 467'], C)]
=(6P, T[O(C'[Q’']), next(R’), 467'], C)
if R'=p>P
repeat_backtrack [(Q, €, €)1 =(0Q, ¢, €)

4.3 Mapping of Trail and Continuation to a Scheme
Program

Realization of a Prolog system in Scheme is now at
hand, although one would still need architectural intui-
tion. We enumerate the major points for designing an
abstract Prolog machine in Scheme.

 Homogeneous rewrite rules of the same head sym-
bol is realized as a single procedure.

» Trail T is realized as a stack. We call this stack 7-
stack. In WAM our T-stack is called a local stack.

¢ A rewrite record is encoded into a more efficient
data structure called frame in T-stack. For each
call of a procedure a frame is allocated.

¢ Close examination of equations (17) and (18) rev-
eals that the creation/deletion of a rewrite record
of the stack does not exactly synchronize with
procedure entry/return.

e An mgu which is a component of a rewrite record
is realized as a block of variables in the frame.

e A frame consists of (cp, x1, . . ., Xa, bp, vt, nr;
Y1, - -« » Ym), Where the components to the left of
’;> are required and the components to the right is
optional depending on each rewrite rule.

-X1, - . . , X, are variables that appear in the head.
We can choose variables in the heads of the same
head symbol such that each variable at the same
parameter position of the head is the same.

-cp is a continuation.

-bp is a value of the backtrack pointer BP (see be-
low).

-vt is a pointer to a variable trail. It is clear that
variable trails can also be organized as a stack.
We call this stack v-trail.

~nris the address of the code for the next rule. A tu-
ple (bp, vt, nr) corresponds to a choice point of
WAM.

~Y1, . . . » Ym correspond to variables that only ap-
pear in the body of each rewrite rule. Actually
they are pointers to variables allocated in the
heap. The heap, however, does not appear explic-
itly in our discussion since we do not discuss the
representation of terms.

551

¢ In order to implement a quick backtrack we in-
troduce BP (called backtrack pointer) that points
to the frame of the state to which the quick back-
track returns. BP always holds the most recent
value of nr.

We do not have to manipulate explicitly the 7-stack
and continuations since they are provided in the
Scheme system. The T-stack is simply the Scheme’s sys-
tem stack. Continuations are manipulated using
Scheme’s special procedure call-with-current-con-
tinuation (below it is abbreviated as call/ cc). Equations
(18) [Return] and (19) [Quick-backtrack] are realized by
call/cc of Scheme. ¢p and nr denote the continuations
created by the execution of call/cc. The continuation
cp is evaluated at the time of procedure return (cf. (18)),
and bp is evaluated at the time of a backtrack (cf. (19)).
The v-trail is explicitly realized by an array. Associated
with the v-trail, we have a top-of-stack pointer VT. VT
and BP are realized as a global variable.

4.4 Generation of a Scheme Program

We describe below the case of a unary predicate
definition. Generalizing to n-ary case is straightfor-
ward. Let

{p(x)DPh c e ey p(x)DPn}

be a set of rewrite rules from which we translate to a
Scheme program.

We assume that P; consists of goal calls p;,, . . .,
Di, k. The comments in the Scheme program to the de-
fined procedure are hopefully sufficient to understand
the program.

(define (p x)
(call/cc
(lambda (exit)
(let ((oldbp BP)(oldvt VT))
; first rule
(call/cc
(lambda (nr)
(let ((y11 (newvar))...(ylml (newvar)))
; newvar creates in the heap a variable
; whose initial value is 'undef’
(set! BP nr)
(pll...)...(plkl...); goal calls in the
; body of P1
(exit nil))))
; next rule
(pop-vtrail oldvt)
; reset the variables to "undef’ that have been
; instantiated since the goal call of the
; previous rule
(call/cc
(lambda (nr)
(let ((y21 (newvar))...(y2n2 (newvar)))
(set! BP nr)
(p21...)...(p2k2...)

552

(exit nil))))

(pop-vtrail oldvt)
; The variables pushed between oldvt
; and VT are reset to 'undef’, and
; VT is restored to the value of oldvt.
; We do not need a continuation here since this
; is the last rule.
(set! BP oldbp)
; restore the old BP to the point
; that the state of APM returns
; when the following rewrites fail.
(let ((ynl...)...(ynmn...))
(pnl...)...(pnkn...))))))

We do not fully specify the algorithm of procedure
unify since it is well understood (see [7], e.g.). The only
point pertinent to our discussion is that the v-trail and
backtrack are manipulated in unify. When a variable is
instantiated the address of the variable is pushed to the
v-trail. When unification fails, a backtrack is effected by
evaluating the continuation held in BP. The fragment
of the Scheme program for unify is as follows:

(define (unify x y)
(cond ((var? y); Is y an unbound variable?

(push-vtrail y)
; push the value of y in v-trail
(set-var! y x))
; set the value of y to the value of x

; When all attempts fail, the continuation

; held in global variable BP is evaluated.

(t (BP ’fail))))

Example 3
The following Prolog program app concatenates two
lists.

app(l 1, X, X).
app([XIY], Z, [XI¥W]):- app(Y, Z, V).

The above Prolog program is transformed to
homogeneous rewrite rules.

app (x., x3, x3)>unify ([1, x1) unify(x, x;) unify(x, x;)
app (x1, X2, X3)>unify([x|y], x1) unify(z, x2)
unify([xw], x;) app(», z, w)

Then, the following Scheme program for app is ob-
tained.

(define (app X1 X2 X3)
(call/cc
(lambda (exit)
(let ((oldbp BP)(oldvt VT))
(call/cc
(lambda (nr)
(let ((X (newvar)))
(set! BP nr)

T. Ipa, A. NAKAMURA, T. Suzuki and K. NAKAGAWA

(unify () X1) (unify X X2) (unify X X3)
(exit nil))))

; next rule

(pop-vtrail oldvt)

(set! BP oldbp)

(let ((X (newvar))(Y (newvar))(Z (newvar))

(W (newvar)))

(unify (cons X Y) X1) (unify Z X2)

(unify (cons X ¥) X3)

(app YZW)))))

5. Concluding Remarks

We have shown how the operational semantics of Pro-
log is understood by giving several abstract Prolog
machines. Prolog is known as a logic programming lan-
guage based on the SLD-resolution, and theories of the
operational semantics of Prolog abound. Good im-
plementation of Prolog systems, such as DEC-10 Pro-
log [11], SICStus Prolog [2], and Quintus Prolog', ex-
ist. There is, however a big gap between the theories of
the operational semantics of Prolog and their implemen-
tations. Our attempt is to bridge the theories of the oper-
ational semantics of Prolog and the implementations.
The gap has been shown to be filled by refining abstract
Prolog machines. The refined abstract machine exhibits
the properties that are amenable to procedural realiza-
tion in terms of Scheme programs.

The translation to Scheme programs relieves us from
considering certain details of implementation such as al-
location of variables and handling of code addresses,
while at the same time it explicates the essence of the
computation of Prolog, such as unification-driven goal
calls and automatic backtracks. The outcome of our
treatment of the operational semantics is desireble one
from an application point of view since Prolog pro-
grams are runnable in Scheme systems. Furthermore
our treatment makes it possible to combine Scheme pro-
grams and Prolog programs.

We have focussed on the control aspect of the compi-
lation in this paper, and (to some extent) on goal rewrit-
ing by unification. Nilsson identified three major issues
in the compilation of Prolog programs: i.e., (i)
parameter passing by unification, (ii) term representa-
tion, and (iii) control structure, in his domain-based
Prolog {8]. Later, Kursawe [6], based on the same obser-
vation, proposed a method of transforming Prolog pro-
grams to simpler ones that correspond more closely to

WAM code [12].

In our view (iii) of the above points is most critical in
understanding the semantics of Prolog. We do not dis-
cuss optimization and specialization (by partial evalua-
tion) of unification. Kursawe’s work can be adapted
into our framework easily. The problem of term

'Quintus Prolog is a trademark of Quintus Computer Systems, Inc.

Abstract Machine Approach to Operational Semantics of Prolog

representation is not dealt with since terms in our im-
plementation are represented in S-expressions unlike
vector representation of WAM, and the facilities for
structuring data are available for free.

‘Cut’ is not dealt with in this paper since it is straight-
foward to extend our machines to allow for the cut oper-
ator. Moreover, by the discussion on this extension we
would gain very little in understanding abstract opera-
tional semantics of (pure) Prolog.

Lastly, we would like to mention the relationship of
our work with the works on compiling Prolog into
other languages. Nilsson suggested a compilation of
Prolog programs into Pascal [8), and Weiner and
Ramakrishnan reported compilation into C [13], their
works, however, do not address the correctness of com-
piling methods with respect to the formal operational
semantics of Prolog. Our emphasis in this paper is to
formalize the operational semantics of Prolog. It is be-
yond the scope of the present paper, albeit interesting to
pursue, to address the problems of optimizations of
compilation and of the feasibility of Scheme as a final
abstract Prolog machine.

References

1. BAETEN, J. C. M. and WELILAND, W. P. Semantics for Prolog via
term rewrite systems, Springer LNCS 308 (1987), 3-14.

2. CARLSSON, M. and WID’EN, J. SICStus Prolog user’s manual.
SICS Research Report R 88007B, SICS, 1988.

3. COLMERAUER, A. Equations and inequations on finite and infinite
terms. In FGCS, ICOT (1984), 85-99.

4. DEBRAY, S. K. and MisHRA, P. Denotational and operational
semantics for Prolog. In Wirsing, M. ed. Formal Description of
Programming Concepts—III, IFIP, Elsevier Science Publishers B.V,
(1987), 245-272.

5. DERANSART, P. and FERRAND, G. An operational formal defini-
tion of Prolog. Rapports de Recherche 763, INRIA (Dec. 1987).

6. KuUrsawg, P. How to invent a Prolog machine. New Generation
Computing, 5 (1987), 97-114.

7. LLoyp, J. W. Foundations of Logic Programming. Springer-Ver-
lag, second, extended edition, 1987.

8. NiLssoN, J. F. On the compilation of a domain-based Prolog. In
Mason, R. E. A. ed. Information Processing 83, IFIP, Elsevier
Science Publishers B.V. (1983), 293-298.

9. REES, J. and CLINGER, W. eds. Revised® report on the algorithmic
language Scheme. SIGPLAN NOTICES, 27(12) (1986), 37-43.

10. vaN EMmpEN, M. H. and LLoyp, J. W. A logical reconstruction
of Prolog 11, Journal of Logic Programming, 1 (1984), 143-149.
11. WAaRREN, D. H. D. Applied Logic—It’s Use and Implementa-
tions as Programming Tool. PhD thesis, Department of Artifitial In-
telligence, University of Edinburgh, 1977.

12. WARREN, D. H. D. An abstract Prolog instruction set. Techni-
cal Note 309, SRI International, 1983.

13. WEINER, J. L. and RAMAKRISHNAN, S. A piggy-back compiler
for Prolog. In Proceedings of the SICPLAN '88 Conference on
Programming Language Design and Implementation (June 1988),
288-296.

(Received September 2, 1991; revised February 19, 1992)
A Proof of Proposition 2
Proposition 2 Let

0 8, [
Qo= Q1R+ TR, UnE

be a refutation, where ui=0;u;—,, i=1,...,n and

553

Ho=¢and 8, i=1, ..
Then, for i—=1, . .

@ 2@0N2(u-)=¢
®) w=6,0{0¢t/x\t/xe i},
(c) i is idempotent.

. » n, satisfy properties (i) and (ii).
., n, we have

Proof:

The proof is by the induction on i. For i=1, (a) ~ (c) are
obviously true since uo=¢, u1==6, and 6, is idempo-
tent. Suppose that (a)~ (c) are true for i>0. We have,
by definition,

MUi+1= Ui 1ldi
=01V {01t/ x|t/ xe ui} —Aisr— Biyy,
where

Air1={6i41t/ x| 0t =x, t/xe u;}, and
Bi1={t/xe 6i+\|xe D(u)}.

We first show 2(6:.1)N2(u;))=¢, and then show that
Biy1=¢ and Ay, =¢.

Suppose 2(0i+)ND(u)#¢. Let xe D(0:+)ND(u).
Since xe 2(6;+1), there are two cases; xe ¥ (Ri41) or
xe ¥ (u:Q). In the former case, x¢ 2 (u,) since Ri+; is a
new variant. In the latter case, x¢ 2 (u;) since y; is idem-
potent by the induction hypothesis. Both cases lead to
contradiction. Hence 2(60:+1)N2(u)=¢. From this, we
obtain B;:, =¢.

We next show A, =¢. Suppose 4, #¢. Let 6.t/
xe Ai+1. Since 0;11=x, t is a variable, and hence x/te
0;+1. Since t/xe w; and g, is idempotent, x¢ ¥ (u.Q).
But this contradicts property (i). Hence A;+=¢. There-
fore, pir1=0;1\U{6:1t/x1t/xe pi}.

What remains to be proved is that g;., is idempotent.
Let ye 2(ui+1). There are two cases; (1) ye 2(6i+1) or
) ye 2({6i+1t/ x|t/ xe u;}). Both cases are mutually ex-
clusive by (a). In case (1), y¢ €2(6i+1) and y¢ @
({6:+1t/x1t/ xe w;}) since 6;., is idempotent. In case (2),
there exists a binding 6;+1s/y such that s/ye u.. We
prove yg €9(6;+1) and yg €D(16:11/xt/xe u)} by
contradiction.

Suppose ye €9(6;+1). Then there would exist a term
c[y] which contains y, and a variable z such that c[y]/
z€ 0i41. y comes from either u,Q; or hd(R;+1). y¢ ¥
(u:Q) since ye 2(u;) and y; is idempotent. Hence ye ¥~
(hd(R;+1)). But this contradicts s/ye u; since R;4, is a
new vaviant. Therefore y¢ €2(6i+1).

Suppose ye €2({6i+1t/x\t/xe ui}). Then there
would exist #/xe u; and 6,,¢/x such that ye ¥ (6+1t).
This implies (2-1) ye €2(0i+1) or (2-2) ye ¥"(¢) and y
¢ 9(0,‘+|).

Case (2-1) contradicts what we have proved above.
In case (2-2), ye €2(u) since ye ¥'(t) and t/xe u..
This contradicts the fact that s/ye u; and 4; is idempo-
tent. Therefore yg €2({6:+.1t/x|t/xe u}). We con-
clude from cases (1) and (2) that u;4, is idempotent/

