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Surface Deformation by Surface Transformations

Naoki1 Urano*

This paper presents a surface transformation technique that can be applied to most currently used surface
models, such as polygon models and parametric surfaces. A surface is deformed by applying surface transforma-
tion, which is defined by a pair of surfaces. A surface with a complicated shape can be created by combining sim-
ple surface deformations. In this technique, deformation is independent of the geometric model. The operation
is very graphical and provides designers with an intuitive interface. Several examples are presented.

1. Introduction

Although rendering techniques for making pictures
in computer graphics have improved significantly in the
last ten years, a tremendous amount of time is still
required in order to input general geometric data,
especially free-form objects. The editing of geometric
objects, called deformation, is even more difficult.
User-computer interactions should be easy for humans,
rather than for computers, to understand. This means
that the interface should be intuitive for humans [5], a
requirement that has not yet been satisfied in 3D
geometric modeling and the deformation of 3D objects.
The ultimate solution will be physically based modeling
[16, 19, 20], an approach in which the model itself
behaves like the real objects modeled, but the computa-
tional cost of this approach is currently too high for it
to be used in interactive environments. In this paper, we
discuss only surface deformation, because surface
models, such as polygon models, B-spline surfaces,
Bézier surfaces, and NURBS, have been widely used in
industry for a fairly long time. In addition, deforma-
tion is an important key to input in the interactive
modeling of 3D objects. A designer usually refines an
object progressively in the design process. This process,
which includes deformation, is a very important part of
a designer’s work [9].

Surface deformation has been studied for a long
time. There are two major issues here: intuitive inter-
face and model independence. As mentioned at the
beginning of the section, interface is very important.
Any 3D object shapes can be created if the appropriate
geometric data are carefully specified one by one. But
this is very cumbersome. An intuitive interface implies
various features, of which one of the most important is
that the interface should be graphical. Parent. et al.

*IBM Research, Tokyo Research Laboratory, IBM Japan Ltd. 5-
19, Sanbancho, Chiyoda-ku, Tokyo 102, Japan.

Journal of Information Processing, Vol. 15, No. 4, 1992

used the sculpturing metaphor for surface deformation
[15, 14]. This is easy for designers to understand, since
sculpturing a 3D object with a tool is a natural inter-
face. Bartels’ sweeping method can be used to design a
free-form surface by associating curves [3]. Bloomen-
thal, et al. proposed convolution surfaces [4]. These ap-
proaches of combining graphic objects are easy for
designers to understand, since a surface is specified by
curves and surfaces.

The second important issue is model independence.
A deformation should be defined independently of the
surface model. Designers often complain that the opera-
tion of deformation is too mathematical. In other
words, it is very dependent on the geometric model. For
example, a parametric surface consists of a network of
control points, and deformation is performed by
moving these control points. Although this approach is
fairly graphical and reasonably understandable, the
range of deformation is very dependent on the surface
model. Barr proposed an elegant deformation method
for solid objects that is also applicable to surface
models {1]. Sclaroff extended the idea and proposed a
general formula for graphics models [17]. Sederberg’s
Free-Form Deformation (FFD) and its extension, Ex-
tended Free-Form Deformation (EFFD), proposed by
Coquillart, are very powerful tools and can be applied
to any geometric models [18, 7, 8]. However, it is
sometimes difficult to find the values of the geometric
coordinates in the parametric space when FFD or EFFD
is applied to already existing 3D objects. Another impor-
tant requirement in terms of model independence is to
provide various granularities for deformation control.
It is necessary to allow a design process that moves
from a rough design to fine details. Forsey, et al. solved
the problem by using hierarchical surfaces [6, 13].

This paper proposes an alternative technique for sur-
face deformation. The purpose of the technique is to
satisfy some of the requirements discussed above,
namely that
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Fig. 1 Surface Point.

» Deformation should be specified graphically.

» Deformation should be specified independently of
the surface to be deformed.

¢ Deformation should be performed hierarchically.

2. Surface Matrices

This section describes surface matrices. A surface
matrix is defined by a surface. This definition is
necessary since a surface transformation, which is de-
scribed in the next section, is derived from a pair of sur-
faces. Most currently used tensor product parametric
surfaces can be represented in this manner.

We assume that a surface exists in three-dimensional
space, #°, and is represented as a group of surface
points in %2°. Each point on the surface has its own coor-
dinate system in %°. We call such a coordinate system a
frame. Let (i, j, k) be a representation of the orienta-
tion of a frame. Each component is a 3D vector in this
case. For example, the vector i has the components x, y,
and z. Figure 1 shows the reference frame (ip, jo, ko), @
point P on the surface, and its orientation (/, j, k). The
position of P is expressed by a 3D vector from the
origin of the reference frame (io, jo, ko), Po. Let this vec-
tor be c¢. Figure 1 shows the vector ¢ of the point P,
which is expressed by the vector from P, to P. Given the
vector ¢, the frame of the point is represented as (7, /,
k, c¢). Thus, the surface is defined as a group of points
(i, j, k, ¢). Assuming that the surface has some
parameters, and letting o be a representation of the
parameters, we can represent the surface matrix S (o) by
the following equation:

i(o)

_| (e
S(a)= k()
c(o)

In this case, the matrix is 4 x 4.

(0]

- O O O

3. Surface Transformation

This section describes transformation from one sur-
face to another. As described in the previous section, a

N. Urano

point on a surface can be represented in matrix form. A
point (i1, ji, ki, ¢;) on one surface is transformed into a
point (&, j2, k2, ¢;) on another surface by a transforma-
tion matrix M. This is represented by the following
equation:

i 0 ih 0
i 0 i 0
T m=| @
k0 k: O
ca 1 c; 1

Given two surface matrices, Si(a) and Sx(8), where o
and B are the parameters of surfaces S; and S;, respec-
tively, if there is one-to-one mapping between « and £,
then Si(a) is transformed into Sx(8) by a matrix, M («,
). We call the matrix M («, 8) the surface transforma-
tion matrix. The mapping from a point of S, to a point
of S, is one-to-one, and is uniquely determined. The sur-
face transformation is represented by the following
equation:

Si{a) M (a, B)=SxB) 3)
where
o)
Jil@)
S =
(o) (@)

cifo)

(C)

- O ©

and

i(B)

JAB)
S =
2(B) KB)

c(B)

Figure 2 shows that point P, of surface S, is
transformed into point P, of surface S, by transforma-
tion M.

The transformation matrix is computed by multiply-
ing both sides of Equation 3 by the inverse of the sur-
face matrix, Si', as follows:

M(a, B)=S1"(a)SAB) ©)

If surface S, has the parameters «, then the inverse
matrix S;! in Equation 6 has the parameters o. Hence,
the transformation matrix M(«, ) can be computed
when the values of o and £ are determined.

(&)

-0 O O

4. Surface Deformation

This section explains a surface deformation tech-
nique. Deformation is performed by applying surface
transformation to a surface. Assume that the surface to
be deformed, S;, has parameters y. Given the surface
matrix, Sy(y), and the surface transformation matrix,
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Fig. 2 Surface Point Mapping.

M(a, B), and assuming that «, 8, and y have one-to-
one mapping with respect to one another, we can deter-
mine the deformed surface, Si(a, B8, ), as follows:

Sda, B, N=S:(N)M(a, B) )]

Figure 3 shows that surface S; is deformed to S, by
the surface transformation M, which is derived from
the given surfaces, S, and S,. Applying the same surface
transformation M to the deformed surface S, yields sur-
face Ss, which is more bent.

However, the reference frame of surfaces S, and S,
may not be always the same as the reference frame of
surface S;. Hence, the following transformation
matrix, R, should also be introduced:

S4((¥, ﬁ’ 7)=SJ(Y)RM((¥’ ﬁ) (8)

Furthermore, the deformation frame to which the
deformation transformation applies may be changed
from one point to another on the surface. In this case,
the transformation matrix R has various values on the
surface, and Equation 8 becomes as follows:

Sda, B, =S:(»)RMM (, B) &)

5. Examples

This section examines the case of tensor product
parametric surfaces, such as B-spline surfaces and
Bézier surfaces. A tensor product parametric surface is
defined by mx n control points, b, and by piecewise
polynomial basis functions, B(x) and Bj}(v), of
degrees m and n, respectively [2, 11, 12]. In the case of
Bézier surfaces, the basic functions are Berstein
polynomials. The parameters u and v vary independent-
ly. A point on the the surface, c, is

n

c(u, v)=Z

m
i=0 j=0

b ;BT (u)B] (v) (10
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Fig. 3 Surface Deformation.

The unit tangent vectors on the surface are computed
by taking partial derivatives of the surface equation as
follows [10]:

—c(u,v)
IESPN an

a—uc(u, v)

t,(u, v)=

and

3
—c(u,v)
IESVNT a2

a—”c(u, v)

The normal vector of the surface is the cross-product
of the tangent vectors at the point ¢ [10]. The equation
of the normal vector is

t(u, v)y=

a d
—c(,v)X—c(u,v)
n(u, )=-2 2 a3
$ U= B
3 c(u, v) 3, c(u, v)

Assuming that the two tangent vectors are or-
thogonal, the frame of the surface can be represented
by the tangent vectors and the normal vector. Thus the

surface is represented as follows:

t.(u, v)

0
t,(u,v) 0
0
1

S, v)= (14)

n(u, v)
c(u,v)
Let us take a very simple case of deformation, the

one that appears in Fig. 3. Surface S, is flat and square
and surface S; is generated by bending surface S;. Since
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surface S, is a square mesh, it is represented as follows:

1 0 00

Si(uy, v))= 0 ! 00 (15)
0 0 10
ci(u, v1) 1
and its inverse is:
1 0 00
ST, v)= 0 : 00 (16)
0 0 1 0
=y, vy) 1
S, is:
b, (uyv) 0
S, oy=| D an
nyuz, v2) 0

otz 1) 1
Thus the transformation matrix M in Equation 6 is:
Muy, vy, Uy, V)=87" (w1, v1)Sx(u2, v2) (18)

If the reference frame of the surface S; that is to be
deformed is the same as the reference frame of surface
Si, then the transformation matrix R in Equation 9 is
the identity matrix. Thus, surfaces S; and Ss are
represented as the following matrices:

Sa(ur, v1, Uz, 02, U3, V3)=Ss(ts, VYM (U1, V1, Uz, V)
19)
Ss(ui, v1, Uz, V2, U3, V3)
=8a(uy, v1, U, V2, Uz, V)M (uy, vy, Uz, v2)  (20)

Figure 4 shows surface S, and Fig. 5 shows the defor-
mation surface S; in relation to surface S;. Given these
surfaces, the transformation matrix can be computed as
previously described. The surface S; in Fig. 6 is de-
formed to the surface S, in Fig. 7 by the transformation
matrix. Applying the same deformation to the surface
of Fig. 7 yields the surface Ss shown in Fig. 8. Figure 10
shows the result when the same deformation is applied
to the bumpy surface in Fig. 9. Figure 12 shows the
result when the same deformation is applied to the wavy
surface of Fig. 11. Another example of a deformation
surface is shown in Fig. 13. The deformation is defined
in relation to surface S,. Figure 14 shows the result
when the deformation is applied to the surface of Fig.
11. Figure 15 shows an example of combination of
deformations.

In the example, the inverse matrix can be evaluated
when the parameters u#, and v, are determined.
However, in more general cases, it is sometimes
necessary to compute the inverse matrix at each sample
point. This often happens when S; has a more com-
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plicated shape than a simple plane. It is not usually in-
tuitive to imagine a deformation from a complicated
shape to a simple shape, and this is not our intention
with regard to deformation.

Note that all the surfaces appearing in the figures are
evaluated at arbitrary sample points on the surfaces and
are tessellated to triangles when they are rendered in
Phong shading. Polygon tessellation is a practical tech-
nique when parametric surfaces are rendered in an in-
teractive system, because it is computationally expen-
sive to render them directly, especially in the case of
parametric surfaces with many parameters.

6. Conclusion

This paper has presented a surface deformation tech-
nique. We showed that a deformation can be specified
graphically by a pair of surfaces, independently of the
surface to be deformed. Thus, many types of deforma-
tion could be predefined as deformation tools. It is not
necessary for users to know the mathematical elements
behind the deformation tool. They only need to
recognize the deformation from the shapes of a pair of
surfaces. Users can deform surfaces with these visible
deformation tools. This graphical specification in-
creases the intuitiveness of the interface. The definition
of surfaces also reduces the number of data required,
because a deformation itself is usually defined by simple
surfaces.

The surface model used in the definition of deforma-
tion can be different from the surface model of the ob-
ject to be deformed. For example, a deformation can be
defined by a pair of Bézier surfaces when the surfaces to
be deformed are B-spline surfaces. Therefore, it is in-
dependent of the surfaces to be deformed. Although
only the tensor product parametric surface case was dis-
cussed in this paper, the basic idea can be applied to
other surface models as long as the geometric character-
istics (the normals and orthogonal tangents) and the
one-to-one mappings among the surfaces are known.
However, in some surface models, it is hard to find
them. For example, in the case of a polygon model, it
would be relatively easy to find the geometric character-
istics, because the model often includes enough informa-
tion, but it might be difficult to find the one-to-one map-
ping.

We also showed that a surface with a complicated
shape can be created by combining deformations. The
deformed surface is not converted into a normal surface
model. The final deformed surface is expressed in the
original surface and a sequence of deforming opera-
tions. It allows various granularities of deformation.
This matches the rough-to-fine design process and
allows hierarchical deformation. All these capabilities
make the technique very useful in interactive 3D surface
modeling.




Surface Deformation by Surface Transformations 523

Fig. 4 Surface S,. Fig. 5 Deformation surface S,.

Fig. 6 Surface to be deformed ;. Fig. 7 Deformed surface S,.

Fig. 8 Deformed surface S;. Fig. 9 Surface to be deformed.
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Fig. 10 Deformed surface. Fig. 11 Surface to be deformed.

Fig. 12 Deformed surface. Fig. 13 Deformation surface.

Fig. 14 Deformed surface. Fig. 15 Combination of deformations.
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