12 Journal of Information Processing

Regular Paper

Hardware Support and Code Generation for
Dynamic Range Checking in C

PAuL SPEeE* and EncHi Gotott

Runtime checking in general and runtime array subscript checking in particular is considered to
be very costly in terms of execution speed. We will show that runtime checking and optimal

execution are not necessarily exclusive.

We present a novel memory protection scheme called

BL-addressing which allows range checking to be done in parallel with the memory access, reducing

or removing overhead caused by range checking.

We describe the implementation of the BL-

addressing in a C compiler. At the same time we suggest that a small change in the ANSI C language
definition is necessary to successfully implement array subscript checking.

1. Introduction’

To improve program reliability and to protect
the user from unintentional programming mis-
takes, a program can be checked in two ways.
Static checking takes place during program
compilation while dynamic checking takes place
during program execution. Of the various forms
of static checking, static type checking is the
most important. Static type checking can be
done in languages which are statically typed. In
languages such as Lisp, data types are associated
with objects during runtime and type checking
must be done dynamically. Type checking
verifies whether the type of the operands matches
the type required by the operator; type coercion
may be optionally done. Static checking has
important advantages. The programmer is
notified of the error, not the user. The check is
only performed once, not each time the program
is executed or worse, many times during pro-
gram execution.

However, there are conditions which simply
cannot be checked during program compilation.
When an array is indexed, the value of the index
is not known until the program is executed. If
the index lies outside the array boundaries, in-
correct data can be read or data can be stored in
unrelated locations. As a result the execution
can either unexpectedly abort, or worse, the
program can complete ‘correctly,” but with incor-
rect results, This can be anywhere from inconve-

T Research Development Corporation of Japan
(ERATO)

1 Faculty of Science, University of Kanagawa

* Currently, Unix System Laboratories

nient to fatal; consider for example banking
transaction systems, satellite control, and life
support systems.

In contrast to Pascal and Ada, which require
strict runtime checking, C is meant to be a small
and efficient system programming language.
Kernighan and Ritchie write, “C retains the
basic philosophy that programmers know what
they are doing; it only requires that they state
their intentions explicitly”.'

Our experience with students programming in
C showed that most of the programming errors
were caused by illegal access through pointers
and illegal array access. Hoare once compared
the evil of pointers with the evil of gotos.'®

In this paper we will present a new memory
protection scheme. The memory protection
scheme was not originally designed to provide
hardware assistance for runtime array checking.
Only much later were its features implemented in
a C compiler to provide optional runtime check-
ing. The runtime checking adds only a small
overhead; actually in some cases code can run
even faster using this addressing scheme. Sec-
ondly, we would like to make a case for adding
optional runtime checking to C. Using opti-
mization techniques such as common subexpres-
sion elimination, code motion, induction variable
elimination, etc., such runtime checking can be
implemented efficiently. Finally, we describe
here the implementation of code generation and
code optimization for BL-addressing in the C
compiler; it can be equally well applied to
Pascal, Fortran, Ada, etc.

Hardware Support and Code Generation for Dynamic Range Checking in C 13

2. Hardware Assist for Range Checking

Several architectures provide hardware assist
for dynamic range checking in one way or
another. First, we will describe architectural
support for dynamic range checking which can
be found in other architectures. We will then
describe the BL-addressing scheme which is
employed by FLATS2!¥ a cyclic pipeline shared
memory MIMD processor.2

2.1 Trap Instruction

While it would be possible to implement
range checking using compare, branch and trap
instructions, most CISC processors provide spe-
cial instructions to aid range checking. The
VAX architecture® provides the index instruc-
tion which does the index calculation and incor-
porates range checking. The 68000 series
processor'® includes two instructions for range
checking. The chk instruction checks for the
contents of a data register to be in the range of
0 and a value specified in the operation. The
chk? instruction checks a register to be within
the range specified by a lower and upper bound
in memory. The Intel 80286/80386 provide a
special bound instruction. The IBM 80l
project?® showed that runtime range checking
could be implemented with little overhead using
a special compare and trap instruction and an
optimizing compiler.*"'®

2.2 Descriptors

In descriptor-based architectures, a data seg-
ment is described by a descriptor which specifies
both the starting address and the length of the
segment. Each access to the segment goes
through its segment descriptor. Well known
examples of descriptor-based architectures are
the Burroughs B6700'® and the ICL 2900.”

Ada renewed the interest in descriptor-based
architectures and new approaches were
proposed.® Bishop stated the problems associat-
ed with descriptors: a) descriptors control the
size of items, b) setting up descriptors is very
costly, ¢) descriptors mean unnecessary checks,
and d) descriptors are confused with indirect
addresses.

Hill suggested the inclusion of two extra regis-
ters in the ALU. A special instruction load
ranges would load the low and high ranges into
those registers. During the subsequent opera-
tion, the result of the ALU is checked against the

range registers.!?

2.3 Capabilities

Capabilities!®?? are an extension of de-
scriptors. While descriptors refer to a memory
segment, capabilities refer to an object to which
the owner of the capability has certain access
rights. A capability represents the right to access
(read/write) the data, destroy the capability or
copy the capability. Each capability is unique in
that it contains an object identifier. Two ways
exist to protect capabilities. The first way uses
tags to identify capabilities, the second way uses
separate capabilities and segments.

An example of a capability machine is the
IBM System/38.® The System/38 has three
provisions for securities : a) capability based
addressing, b) objects called User Profile deter-
mine the protection domain of a process and
contains the access right to system objects, and
c) processes which are isolated from each other.
Access to objects is done using tagged pointers.
The System/38 provides four types of capabil-
ities : System Pointers to address objects, Space
Pointers to address a byte location in a space
object, Data Pointers, which are like Space
Pointers but contain attributes of the data they
locate, and Instruction Pointers, which act as
label values for variable branches within a
program. Each capability consists of 16 bytes.

The SWARD machine'® implements both
tagged storage and capability based addressing.
The machine recognizes 15 data types; 10 primi-
tive data types and five complex data types
(array, parameter list, relocatable, structure,
user).

Examples of capability-based machines which
use segmentation to distinguish between capabil-
ities and data are the Plessey System 250, the
Cambridge CAP computer, and the Intel iAPX
432.

2.4 BL-addressing

The BL-addressing scheme was initially
intended as a memory protection scheme, not a
range checking scheme. The scheme was im-
plemented in the FLATS2,'¥ a two instruction
stream cyclic pipeline shared memory
processor.2!

Most modern architectures often support pag-
ing, segmentation or a combination of both
virtual memory schemes. Page or segment tables
contain a description of the information needed

14 Journal of Information Processing

for the address translation from a logical address
to a physical address. The table entries contain
information such as access rights and other
protection information. The VAX page table
entry® has a protection field which describes the
read/write access rights for each of the following
modes : kernel, executive, supervisor, and user.

Because of the memory access time require-
ments, the FLATS2 memory system could not be
implemented using such an elaborate scheme as
used by the VAX (and many other architec-
tures). The memory system of the FLATS?2 is
implemented as a very large cache. Constraints
do not allow the addition of a memory protec-
tion scheme in the memory system. Instead it
uses a memory protection scheme called the B
(ase) L (imit) -addressing scheme. The BL-
addressing scheme can be considered a form of
descriptor addressing. Two general purpose
registers, one containing the address of the start
of a memory segment® and the other containing
the address of the end of a memory segment,
form together a descriptor called BL-register
pair. Each memory access requires the
specification of a BL-register pair; the effective
memory address is checked against the base and
limit address. We will discuss BL-addressing in
more detail in the following paragraphs.

BL-register pair

A word consists of 33 bits, 32 data bits and a
one bit tag. The tag specifies whether the word
is to be treated as a 32 bit integer or a 32 bit
address. The tag is therefore refered to as the
address tag. Both memory and the general
purpose registers are tagged. Each register can
either contain a value or an address. If an even
and odd numbered general purpose register both
contain a valid address, they can be used as a
base and limit register pair.**

Effective address calculation

Depending on the memory addressing mode, a
general purpose register is either treated as the
base or limit register of a BL-register pair, index
register or pointer register. FLATS2 has three
general purpose addressing modes (see Fig. 1).

* Although we use the word segment here, it does not
imply the memory space is segmented; the FLATS2
memory space is linear.

** A BL-register pair is specified by its base register. If
the register is an odd numbered register, the previous
even numbered register is the limit register.

general registers

beset

flritt '—~| g_. offect addresst
4

Index
index addressing mode
general registers memory
beset >
Kirvitt offect. addresst
ot
olfset addressing mode
general registers memory
baset >
offect. addresst
poirtert
pointer addressing mode

' address tag set

Fig.1 Addressing modes.

In the index mode, the contents of the base
register (must contain a valid address) and the
contents of the index register (must contain an
integer) are added to form the effective address.
In offset mode, the contents of the base register
and an immediate offset are added to form the
effective address. In addition, in pointer mode,
the effective address is formed by adding the
contents of a pointer register (must contain a
valid address) and an immediate offset. For a
more detailed description and the assembly lan-
guage notation of the FLATS2 addressing

Hardware Support and Code Generation for Dynamic Range Checking in C 15

general
registers

memory

taddress tag set

limitt

Fig.2 BL-range checking.

modes, refer to Appendix A.

BL-range checking

For each memory reference a BL-register pair
must be specified. The effective address is
checked against the base and limit registers. The
memory access fails if the base, limit or effective
address is not a valid address or if the effective
address lies outside the range specified by the
base and limit registers. If the memory access
succeeds, a branch to a specified location occurs;
otherwise, the next instruction is executed (Fig.
2). Each instruction which can have a memory
operand has a field specifying the branch ad-
dress.* If the specified address is the address of
the next instruction, a memory address error trap
occurs when the base, limit or effective addresses
are not valid addresses or a BL overflow error
trap occurs when the effective address lies out-
side the boundaries specified by the base and
limit registers. The ‘branch to’ address can be
used to implement tight loops by using the
BL-range checking control as an end of loop
test. If we would have used the branch field to
specify the address to ‘branch to’ on failure, we
would not have been able to successfully make
use of the BL-range checking as an end of loop
test, because we would require an additional
branch instruction to branch to the beginning of
the loop. Under the assumption that a loop is
executed more than once, this would result in an
additional instruction being executed for each
iteration.

* The Crisp processor uses inline branch fields for
branch folding,” that is, the instruction cache includes
a branch field for each instruction.

Address creation

Like capability based systems, only instruc-
tions related to address calculation can set the
address tag. All other instructions clear the
address tag. This protects the user from forming
an illegal address. Furthermore, new addresses
(and subsequent BL-pairs) can only be derived
from existing valid addresses and BL-register
pairs. This is important to guarantee that the
user can never form an illegal address and thus
can address the memory outside the assigned
address space.

Using such instructions as the load effective
address instruction lea, new addresses can be
created and these new addresses can then form a
new BL-register pair. If the calculated effective
address falls outside the specified BL-register
pair, the address tag is cleared. Consequently,
the resulting value cannot be used as an address
nor as a base or limit address in a BL-register
pair.

Discussion

While the IBM System/38 supports tagged
capabilities and has the concept of a Space
Pointer which may be adjusted to point to any
byte within the space object, it would not be
correct to consider BL-addressing a form of
capability addressing. Concepts such as objects,
capability lists, domain switching are all missing
from the BL-addressing scheme. In our opinion,
the BL-addressing should be considered a form
of descriptor addressing. However, the problems
raised by Bishop do not apply to the BL-
addressing scheme. Using BL-addressing does
not necessarily add to the execution time. A
special instruction exists to create a BL-register

16 Journal of Information Processing

pair in one machine cycle; this is no more than
calculating an effective address (see Table 1 for
an example). The check of the base and limit is
done in parallel with the memory access and
therefore does not cause additional overhead.
Furthermore, the BL checking is an inherent
part of the memory protection scheme; it is
always performed.

While Gehringer argues that all aims of tag-
ging can be achieved without hardware
tagging,'? it should be noted that in our scheme,
memory protection could not be guaranteed
without the assistance of hardware supported
tags.

Using descriptors may cause a large overhead
if only a few segment registers are provided. It
would cause unnecessary reloading of segmemt
registers. For this reason, the FLATS2 architec-
ture allows any general purpose register pair to
be used as a base-limit register pair. Further-
more, a total of 32 global general purpose regis-
ters and 32 local general purpose registers are
provided. The local general purpose registers
are switched by the call and return instructions.
This number of registers is sufficient to keep
most BL-pairs in registers.

3. Compiling for Range Checking

In this section we will discuss the implementa-
tion of range checking in C using the BL-
addressing scheme. We will first discuss some of
the general problems associated with the imple-
mentation of arrays in C before going into
details on the actual implementation. We will
see that for each array access a lot of additional
code is generated. However, using various
optimization techniques® such as common
subexpession elimination, loop invariant code
motion, strength reduction, and induction vari-
able elimination, it is possible to reduce the
overhead incurred by the runtime range check-
ing.

3.1 ArraysinC

The support for arrays in C has always been
minimal. By equating an array to be equivalent
to a pointer to the first element of an array (Ref.
1, §3.3.2.1), the semantic level of arrays is
lowered. This can easily be seen from the fact
that when a two dimensional array is passed as
an argument to a subroutine, the programmer
has to explicitly do the array index calculation.

Arrays in C are second class citizens; this is the
main reason why C never succeeded in attracting
the scientific community. Not only is most of the
scientific code written in FORTRAN (the dusty
deck problem), but lack of sufficient support for
arrays makes efficient compilation for vector
processors (vectorization) a difficult task.®

Inlining of functions would remove some of
the problems associated with array parameters,
because the information on the array size would
become available to the function body. How-
ever, dynamically allocated arrays cannot be
declared correctly, leaving the problem largely
unsolved.

To be able to use range checking with dynami-
cally allocated arrays or array parameters, we
allow the declaration of a pointer to a variable
size array. Unfortunately, declaration of
pointers to variable size arrays are not allowed
by the ANSI C standard. Example 1 shows the
use of pointer to variable size array declarations.

The function is called as

dasum (size, array);

This construct has several advantages. The
base of the array is still represented by an
address; existing sources or object files will not
be broken. The compiler can choose to ignore
it, as it only specifies the size. It is possible to
write more readable code (sarray) [z][y][z]
instead of «(array-+sizeof (array[0])/sizeof
(array [0][0][0])s x+sizeof (array[0][0])/
sizeof (array[0][0][0])ey+2).

3.2 Implementation of Pointers

Before discussing the implementation of array
access, we will first discuss our implementation
of pointers. Pointers and arrays are closely
related; in fact, the C reference manual states that

double dasum(n, dx)
register n;

register double (*ax) (n];
{
double sum;
register i;

for (i = 0; i < n; i++)
sum += (*dx)({i);

return sum;

}

Example 1 Variable size array parameter.

Hardware Support and Code Generation for Dynamic Range Checking in C 17

#define INTS 6

int iv = 3;

int *a[INTS) = (&iv, &iv,

int x = (int) &iv;

main()

(int i;
int sum = 0;
int **ip = a;

for (i = 0; i <= INTS; i++)

{

sum += **ip+s;

)

&iv, &iv, &iv, &iv);
/* this is not an address */

/* '<=' is wrong */

printf(*sum = $d\n*, sum);

Example 2 lilegal pointer access.

the array access array [index] is identical to
«(array+index). In principle, it is possible in C
to assign any value to a pointer and use this
pointer to access memory. As long as the
pointer points to the user data space, the pointer
can be used to read or write the location it
points to (within the memory alignment con-
straints). Whether the result is actually what the
user intended, is sometimes doubtful. As the C
pointer can point to any location within the
user’s data space, it is very easy to corrupt data.
For example, the use of an integer as a pointer
(casting or argument passing) or during pointer
addition, can result in undersirable effects.
Example 2 shows how a simple programming
error can result in the incorrect execution of the
program and thus results in the incorrect output.
The most likely result will be ‘sum=21", e. g.
seven times the contents of iv, but which is not
correct, because the seventh address is not a legal
address. Executing this program on a Sun3
results in the incorrect result, while executing
this program on the FLATS2 results in an
exception.

The above problem can easily be solved by
implementing pointers as addresses (address tag
is set) and implementing non-pointers as inte-
ger/floating point values (address tag is clear-
ed). This provides a rudementary form of
dynamic type checking.

In the intermediate code generated by the C
compiler, a pointer is differentiated from an
integer. The compiler makes sure that all opera-
tions on pointers expressed in intermediate code

will follow the rules of pointer arithmetic. A
pointer plus or minus an offset results in a
pointer. A pointer minus a pointer results in an
integer. A pointer plus a pointer is undefined.
An integer minus a pointer is undefined.

Pointer calculation uses a BL-register pair
which represents the user address space and has
been provided by the operating system.

During code generation, the compiler knows
exactly when to emit code for integer arithmetic
or pointer arithmetic. Pointer arithmetic (p+:)
is implemented using the load effective address
instruction lea bl:ii(p).vr. If (p+i) is a legal
address within the area as specified by the
BL-pair bl, it is transferred to the destination
register vr. Casting from integer to pointer is
done using the set address instruction. For
example, the cast p=(char*) 7 is implemented by
seta bl:(7), p. The value of i is transferred to ».
If the value of 7 is within the range of area
specified by the BL-pair bl,* the address tag of
p is set. In this case, the value of p is a legal
address and can be considered a pointer.

The cast i= (int) p is implemented as add p, #
0, i (all non-address calculation instructions
automatically clear the address tag). All valid
pointers (address tag set) can be used to access
memory. If the memory is referenced using a
non-address (address tag is cleared), a memory

* In this case, the BL-register pair contains the lower and
upper bound of the user addressable data space and is
provided by the operating system. This value is loaded
into a fixed global register pair and is known to the
compiler.

18 Journal of Information Processing

address error trap occurs. Executing the previ-
ous example on the FLATS2 results in a trap
when using the contents of the variable xr as a
pointer. As long as no casting is used, this
runtime checking does not increase execution
time.

3.3 Implementation of Arrays

Arrays are implemented as a BL-register pair.
The beginning of the array (& array[0]) is
specified by the base register, while the end of
the array (& array [#]—1) is specified by the
limit register. All memory accesses to the array
are done using the BL-register pair specifying
the array. If the effective address lies outside the
array boundaries, a trap occurs. Figure 3 shows
the calculation of the array boundaries and the
indexing of the array.

In the previous example, the array is a one-
dimensional array. The concept is easily
extended to multi-dimensional array addressing.
For each dimension, we calculate a BL-register
pair. For example, in addressing a three-

dimensional array a [¢][/][£], we first calculate
the boundaries (BL-register pair) of the three-
dimensional array a. Using these boundaries,
we can calculate the boundaries of the two
dimensional plane a[:] (see Fig.4). A trap will
occur if the index 7 is not valid for array a. Next,
we calculate the boundaries of the one-
dimensional row a[:][;] using the BL-register
pair specifying a(i] (see Fig.4). A trap will
occur if index j is not valid. Finally, we can
address a []1[j1[4] using the BL-register pair of
a [#][/] with one of the addressing modes. To
summarize, in accessing a multi-dimensional
array, first the array boundaries are calculated.
Subsequent boundaries are calculated for high
order indexing. Finally, the row boundaries are
calculated. This BL-register pair can then be
used in accessing the row elements. When less
concerned with the correct value of the individ-
ual indexes than that the accessed location
belongs to the array, we can suffice with the
calculation of a single BL-register pair.

general registers generul registers memory

bese dataseg

imit dataseg
base arrey >
Prry— ¢__.: offect addrees

offset 1o amay __I

amey length
micl dseg@ (vr).dsg @len(vr).base array loa base amey @ (index)

Fig.3 Array indexing.

MEMORY
calculate BL A
81 B2 B3
MEMORY
|ia L2 R
calculate BL Afi])

B1
MEMORY
L1
calcutate BL Ali]
Bt B2B&
MEMORY
L3L2 Lt
access AfiJjNk]

Fig.4 Indexing a three-dimensional array.

Hardware Support and Code Generation for Dynamic Range Checking in C 19

3.4 Code Generation for Array Access

Usually, the intermediate code generated for
an array access consists of the calculation of the
base address of the array (pointer) and the
calculation of the offset into the array and finally
the address of the element of the array, consist-
ing of the base address plus offset. For those
arrays whose size is known, our compiler
optionally generates range checking code. It
does this by calculating the base address and
limit address of the array and storing the result
in a BL-register pair. By taking the base register
and treating it as a pointer to the array, the
intermediate code generated for the offset calcu-
lation and element address calculation is equiva-
lent to the general case. During code emission
the base address is recognized to be the base
register of a BL-register pair, not a pointer
register and as a result the correct memory
operand is generated to allow the range check-
ing. The size of statically allocated arrays is
known, but the size of dynamically allocated
arrays or array parameters is not known. If we

would limit the use of range checking to statical-
ly defined arrays, we would lose most of the
important opportunities.

Table 1 shows that the overhead for calculat-
ing the base and limit registers is not necessarily
large. In indexing a[i][j]1[#] (a is statically
defined), we make use of a special instruction
mkbl, which calculates the base and limit regis-
ters in one cycle. The total number of cycles
executed is identical for both pointer calculation
(conventional) and BL-register calculation.
Using the BL-register calculation, initially, we
require one additional instruction to calculate
the boundaries of the array. However, in
addressing the array element, we save one
instruction.

The BL-pair cannot always be calculated
using an mkbl instruction. When it cannot be,
two load effect address instructions are required
(each lea instruction executes in one cycle).
This is necessary when the the two addresses in
the mkbl instruction become too complex to be
encoded in one instruction. Also, when calculat-

Table 1 Indexing a[7][7][4].

Pointer calculation BL-register calculation
mkbl dseg@_a, dseg@_a+3999, vr6 ; bl for a
mul3.l vrl, #400, vr4 mul3d.l vrl, #400, vr4 ; 1+ sizeof(a[0])
lea dseg@_a(vrd), vi6 | mkbl vr6@ (vr4), vi6 @399 (vrd), vr6 ; bl for a[i]
mul3.l vr2, #40, vrd4 mul3.l vr2, #40, vr2 ; j * sizeof(a[0][0])
lea dseg: (vr6)vr4, vr6 | mkbl vr6 @ (vrd), vr6@39(vrd), vr6 ; bl for a[:][/]
muld.l w3, #4, vrd mul3.l vr3, #4, vrd ; k+ sizeof (a{0][0][0])
lea dseg: (vr6)vrd, vr6 ; pointer to al:][/][k]
movw dseg: (vr6), vrO movw vré6@ (vr4), vrO ; load element
#define INTS 6
#define v 3

int a[INTS]) = (1v, IV, IV, IV, IV, IV };

int x = IV;

main()
4
int i;
int sum = 0;

for (i = 0; i <= INTS; i++)

(
sum += a[i};

}

printf(*sum = $d\n*, sum);

/* the '<=' is wrong */

Example 3 lllegal array access.

20

ing the BL-pair for dynamically allocated arrays
and array parameters, an additional instruction
is required to subtract one from the array limit
because the test for the limit boundary is inclu-
sive. The following program demonstrates the
use of range checking. Normally, no runtime
checking code is generated for array indexing,
thus the outside boundary condition is undetect-
ed. On a conventional architecture, the value
printed will most probably be 21. On FLATS?2,
the result will be a BL overflow trap on access-
ing a[6] (see Example 3).

3.5 Optimization of BL-range Checking

In this section we will describe the various
optimizations performed to reduce the addi-
tional instructions generated to support BL-
range checking. As an example, we use the

dscal(n, da, dx)
register n;
double da;
register double (*ax) (n);
{
register i;
for (i = 0; i < n; i++)

(*dx) [i]) = da * (*ax)[i};

Example 4 dscal-scale vector.

_dscal:
movw sp, fp
movw dseg:0(fp), vr0
movw dseg:16 (fp),vrl
mul3.l vro0,#8,vr2
movw #0,vr3

L2:
cmp.l vr3,vr0
bge L3
addr vr2, #-1,vré
lea dseg: (vrl),vrd
lea dseg: {(vrl)vr6,vrs
mul3.l vr3,#8,vré
addr vr2, #-1,vr7
lea dseg: (vrl),vr8
lea dgeg: (vrl)vrx7,vr9
mul3.l vr3,#8,vr7
mov.d vr86vr7,S
mov.d dseg:8(fp),P
mul3.d P,S,vrd@vré
addr vr3,#1,vr3
jmp L2

L3:
movw fp.sp
ret

Journal of Information Processing

routine dscal() from BLAS (Basic Linear Alge-
bra Subroutines) (see Example 4). The routine
dscal() scales a vector with a value.

Figure 5 gives the code including BL-range
checking code generated in non-optimized mode.
For each access to dx[] (both load and store)
code is generated. This is rather costly as it
happens inside the loop.

Common subexpression elimination will
remove the second calculation of the BL-register
pair for array dx[]. Loop-invariant code motion
will move the calculation of the BL-pair outside
the loop (see Fig. 6).

Strength reduction and induction variable
elimination will remove the calculation of the
offset into the array (multiply instruction).
Finally, peephole optimization reduces the com-
pare instruction and the branch instruction to
one compare-and-branch instruction. The add
instruction, compare instruction and the branch
instruction are reduced to a single add-compare-
and-branch instruction (see Fig. 7).

3.6 Loop Control Optimization

It is possible to use the range checking as an
end of loop test by setting up the base and limit
registers so that they do not contain the array
boundaries, but instead the addresses of the first

vi0 = n
vrl = dx[)
vr2 = n * sizeof (double)
i=0

; while (i < n) do
vré = sizeof(dx) - 1
base = dx[]
limit = dx{) + sizeof(dx) - 1
offset = i * sizeof(double)
vr7? = sizeof(dx) - 1

base = dx([]

limit = dx[} + sizeof(dx) - 1
offset = i * sizeof (double)

S = dx[i])

P = da

dx[i] = da * aAx(8])

i+ 1

continue

i=

return

Fig. 5 dascal-unoptimized with range checking.

Hardware Support and Code Generation for Dynamic Range Checking in C

_dscal:
movw sp, fp
movw dseg:0(fp),vx0 ;
mov.d dseg:8(fp),S ;
movw dseg:16(fp),vrl i
mul3.l vro0,#8,vr2 ;
cmp.l vro0,#0 ;
ble L3
addr vr2,#-1,vré ;
lea dseg: (vrl),vrd H
lea dseg: (vrl)vré,vr5 ;
movw #0,vr3 ;
L2:
mul3.1l wvr3,#8,vré ;
mul3.d S,vrd@vré,vrd@vré ;
addr vr3, #1,vr3 ;
cmp.l vx0,vr3 H
blt L2
L3:
movw fp, sp H
ret
Fig. 6 dscalcse and code
_dscal:
movw sp, fp
movw dseg:0(fp), vr0
mov.d dseg:8(fp),S
movw dseg:16(fp),vrl
mul3.l wvro0,#8,vr2
cmp.ble vr0,#0,L3
addr vr2,#-1,vré
lea dseg: (vrl),vrd
lea dseg: (vrl)vré,vrs
movw #0,vr3
mul3d.l vrO0,#8,vr0
L2:
mul3.d S,vrd@vr3,vrdevr3
ac.bgt vro0,#8,vr3,L2
L3:
movw fp,sp
ret

21

vr0 = n

S = da

vrl = dx[])
vr2 = n * sizeof(double)
if (n <= 0) return
vré = sizeof(dx) -~ 1
base = dx[]

limit = dx{]) + sizeof(dx) - 1
i=0
vré = i * sizeof(double)
*(dx+(i*8)) *= da

i+
while (i < n)

return

motion optimization.

vx0 = n

S = da

vrl = dx(]

vr2 = n * sizeof(double)
if (n <= 0) return

vré6 = sizeof(dx) - 1
base = dx[]

limit = dx[) + sizeof(dx) - 1
i=0

vr0 = n * sizeof (double)

*(dx+(i*8)) *= da
while ((i += 8) < (n*8))

Fig.7 dscal-strength reduction, induction variable elim-
ination and peephole optimization.

L5:

mul3d.d S,vr2@<8,vr2@(0),LS

; *(dx) *= da; dx += 8; next

Fig. 8 dscal-loop control optimization.

and last element to be accessed. Of course, this
requires the index variable to monotonically
increase or decrease by a constant value. Often
this can save one instruction; in the example of
dscal, which has a very tight loop of two instruc-
tions, this means a saving of 50 %.

Figure 8 shows a one instruction loop to
implement the dscal routine. The instruction

performs all operations : 1) scale array element,
2) increment array address, 3) compare address,
and 4) branch if not all elements done.

3.7 Compiler

The GNU C compiler, which is a highly
portable, full ANSI C compiler with advanced
optimization features, was used as base to imple-
ment the features described in this section. To

22 Journal of Information Processing

implement the dynamic range checking features,
we added the following features :
® The compiler front-end generates interme-
diate code for dynamic range checking.
The generation of intermediate for dynamic
range checking may be turned on or off
using a compiler switch.
® The intermediate code supports two new
data types: 1) a pointer type (address)
and 2) a range, a composite type consisting
of two addresses (base-limit address pair).
® The GNU C compiler supports the opti-
mization features as described in section
three, but we had to extend them to support
optimization of the range type. Also, regis-
ter allocation had to be enhanced to sup-
port the allocation of register pairs. Vari-
ous modifications found their way back
into the original GNU C compiler.
® The loop control optimization is specific to
the BL-register addressing scheme and
required an additional optimization pass.
® We implemented code generation for the
full FLATS2 instruction set.
It must be noted that all modifications and
extensions did not have an adverse effect on the
portability of the GNU C Compiler.

4. Evaluation

In this section we will evaluate the overhead
caused by adding BL-range checking. As a
benchmark, we used a C version of the Linpack

teddress tag set

unoptimized
bl checking unoptimzed
optimized

bl checking optimized

loop control optimization

o

dasum daxpy

benchmark. This benchmark is widely available
and contains a large amount of array calcula-
tions. It tends to amplify the effect of array
access and should not be considered representa-
tive of the average program. We did not use any
large program like TeX or gecc to evaluate the
performance aspects of the dynamic range check-
ing code. The ratio of array access code/non-
array access code is rather small in these types of
programs. Furthermore, these types of programs
tend to implement array access code using
pointers, making the array boundary informa-
tion unavailable to the compiler. However, one
of the first programs to compile and execute was
the gcc compiler. At that time we found a
coding error which resulted in an access to an
array outside its boundary (an exception was
raised). This error would not have been found,
if it wasn’t for the range checking code.

In Fig.9 we give the cycle count of the inner
loop of the resulting code for various BLAS
(Basic Linear Algegra Subroutines) routines.
The results are given for non-optimized code,
optimized code, non-optimized code with range
checking, optimized code with range checking,
and special optimized code using the range
checking hardware for loop control. The num-
bers given represent the cycle count of the inner
loop per one iteration. The initial instructions
executed are often larger for the optimized rou-
tines, as computations are moved outside the
loop.

dcopy ddot dscal

Fig.9 Inner loop cycle count of BLAS routines.

Hardware Support and Code Generation for Dynamic Range Checking in C 23

Table2 Result of Linpack benchmark.

daxpy* daxpy/daxpyopt
unoptimized 124595614 2.76
optimized 45177340 1.00
bl checking unoptimized 177362614 3.92
bl checking optimized 28525328 0.63
loop control optimization 19998524 0.44
total total/totalyp
unoptimized 140639975 2.29
optimized 61220767 1.00
bl checking unoptimized 193406872 3.15
bl checking optimized 44568301 0.73
loop control optimization 36041473 0.59
MFLOPS** MFLOPS/MFLOPS,,.
unoptimized 0.435 0.33
optimized 1.310 1.00
bl checking unoptimized 0.327 0.25
bl checking optimized 1.907 1.46
loop control optimization 2.506 1.91

The inner loop code of the optimized code is
longer than the inner loop code of the optimized
code using BL-register checking because in the
optimized code, access to memory is done using
the base-limit register pair for the user’s data
space, requiring additional code to calculate the
address of the current element.

Table 2 gives the results of the execution of
the Linpack benchmark. We chose to vary the
daxpy() routine; daxpy() accounts for more
than half of the execution time. In all bench-
marks, the other part of the Linpack program is
compiled with standard optimization. The vari-
ations in execution time come from the varia-
tions in the execution time of the daxpy() rou-
tine.

The benchmark shows that when the bench-
mark program is compiled without using opti-
mization the performance drops dramatically
when using range checking. This is because
each array access require two additional instruc-
tions. Optimization removes most of the over-
head which caused the drop in performance of
the unoptimized use of range checking. Com-

* The numbers represent the number of instructions
executed. Because FLATS2 has one and two cycle
instructions, it does not represent the execution time.

** Actual performance of FLATS2 with a clock of 64.5
ns.

mon subexpression elimination will reduce the
multiple array boundary calculations of one
array to a single one. Loop invariant code
motion will move the calculation of the BL-
register pair outside the loop. Finally, strength
reduction makes it possible to make optimal use
of the FLATS2 addressing modes. By using the
range checking as an end of loop test, we can
reduce the main loop of daxpy() from three
instructions (three cycles) to two instructions
(two cycles).

Executing the Fortran Linpack benchmark
(n=200, double precision) on a Sparcstation [I
gave a result of 2.92 MFLOPS. However, turn-
ing on the range checking option resulted in a
result of 0.93 MFLOPS. The range checking
caused such a large overhead that the benchmark
executed only with 32 % of the normal perform-
ance.

5. Conclusion

The current ANSI C definition is insufficient
to allow optimizations on arrays such as vector-
ization and dynamic range checking. We were
able to successfully implement dynamic range
checking by allowing the declaration of a
pointer to a variable size array. We summarize
the following advantages :

@ better opportunities to do code optimiza-

tion on array access

24 Journal of Information Processing

® code generation/code optimization for
dynamic range checking
@ improved readability of code accessing
dynamic arrays
We presented a new memory addressing
scheme which combines range checking and
memory access called BL-register addressing.
We implemented this memory addressing scheme
in a C compiler to implement runtime range
checking of arrays. Because the range checking
can be done in parallel with the access of the
memory, no additional overhead is incurred.

References

1) ANSI: Draft Proposed American National
Standard for Information Systems — Program-
ming Language C, X3J11/88-158 (Dec. 7 1988).

2) Aho, A.V,, Sethi, R. and Ullman, J. D.: Com-
pilers : Principles, Techniques, and Tools,
Addison-Wesley, Reading, Massachusetts (1986).

3) Allen, R. and Johnson, S.: Compiling C for
Vectorization, Parallelization, and Inline Expan-
sion, Proceedings of the SIGPLAN ‘88 Confer-
ence on Programming Language Design and
Implementation, Atlanta, Georgia, pp.241-249
(June 22-24 1988).)

4) Auslander, M. and Hopkins, M. : An Overview
of the PL. 8 Compiler, Proceedings of the SIG-
PLAN '82 Symposium on Compiler Construction,
Boston, Massachusetts, pp.22-31 (June 23-25
1982).

5) Berstis, V.: Security and Protection of Data in
the IBM System/38, Proceedings of the 8th
Annual International Symposimum on Computer
Architecture, pp. 245-252 (1980).

6) Bishop, J. M.: Effective Machine Descriptors
for Ada, Proceedings of the ACM-Sigplan Sym-
posium on the Ada Programming Language, pp.
235-242 (Nov. 1980).

7) Buckle, J. K.: The ICL 2900 Series, MacMil-
lan Press (1978).

8) DEC: VAX Architecture Handbook, Digital
Equipment Corporation, Maynard (1981).

9) Ditzel, D.R. and McLellan, H.R.: Branch
Folding in the CRISP Microprocessor : Reducing
Branch Delay to Zero, Proceedings of the 14th
Annual International Symposium on Computer
Architecture, Pittsburgh, Pennsylvania, pp.2-9
(June 5-8 1987).

10) Gehringer, E. F.: Capability Architectures and
Small Objects, UMI Research Press (1981).

11) Gehringer, E.F. and Keedy, J.L.: Tagged
Architectures : How Compelling Are Its Advan-

tages, Proceedings of the 12th Annual Interna-
tional Symposium on Computer Architecture,
Boston, Massachusetts, pp. 162-170 (June 17-19
1985).

12) Hill, D.D.: A Hardware Mechanism for
Supporting Range Checks, SIGARCH Computer
Architecture News, Vol.9, No.4, pp.15-21
(1981).

13) Hoare, C. A. R.: Data Reliability, ACM SIG-
PLAN Notices, Vol. 10, No.6, pp.528-533
(1975).

14) Ichikawa, S.: A Study on the Cyclic Pipeline
Computer : FLATS2, Master’s thesis, Tokyo Uni-
versity (1987).

15) Kernighan, B. W. and Ritchie, D.M.: The C
Programming Language, Second ed., Prentice-
Hall, Englewood Cliffs, NJ (1988).

16) Markstein, V., Cocke, J. and Markstein, P.:
Optimization of Range Checking, Proceedings of
the SIGPLAN '82 Symposium on Compiler
Construction, Boston, Massachusetts, pp. 114-119
(June 23-25 1982).

17) Motorola: MC86020 32-Bit Microprocessor
User’s Manual, Second ed., Prentice-Hall, Engle-
wood Cliffs, NJ (1985).

18) Myers, G. J.: Advances in Computer Architec-
ture, John Wiley & Sons, New York (1982).

19) Organick, E. L.: Computer Systems Organiza-
tion—The B5700/B6700 Series, Academic Press,
New York (1973).

20) Radin, G.: The 801 Minicomputer, Proceed-
ings of the Symposium on Architectural Support
for Programming Languages and Operating
Systems, pp. 39-47 (Mar. 1982).

21) Shimizu, K., Goto, E. and Ichikawa, S.: CPC
(Cyclic Pipeline Computer) — An Architecture
Suited for Josephson and Pipelined Machines,
IEEE Trans. Comput., pp. 825-832 (June 1989).

22) Wikes, M. V.: Hardware Support for Memory
Protection : Capability Implementations, Pro-
ceedings of the Symposium on Architectural
Support for Programming Languages and Oper-
ating Systems (ASPLOS), Palo Alto, California,
pp. 107-116 (Mar. 1-3 1982).

Appendix A. FLATS2 Hardware

This appendix describes the FLATS2 hard-
ware features not described in the main paper,
including the functional diagram and the
FLATS?2 pipeline stages. The FLATS2 was
developed to provide support for both symbolic
and numerical applications.

Hardware Support and Code Generation for Dynamic Range Checking in C

FLATS2 functional units

Figure Al shows the functional diagram of
the FLATS2. The Instruction Processing Unit
(IPU) fetches the instruction from the instruc-
tion memory (IM) and decodes the instruction.
It will also calculate the branch target when
necessary. The Global/Virtual frame Unit han-
dles access to the global and local frame regis-
ters, handles simple integer arithmetic, supports
compare and branch and Base-Limit register
checking. The Sum and Product Unit provides
integer and floating point operations including
special instruction such as a real inner product
(rip) instruction.

FLATS? pipeline

Figure A2 shows the FLATS2 pipeline stages.
During the first stage (IF), the instruction is
fetched. The instruction is then decoded during
the second stage (ID). Registers required by the
instruction are fetched during the third stage
(GVR). During the fourth stage (GVX) the
effective address is calculated and compared
against the Base and Limit values. It also
handles simple integer arithmetic operations on
registers. This stage also implements the add-
compare-branch instruction group. The next
stage (DMR) reads the data required by the
operation from data memory. During the sixth

PU GV sPU

az‘ T« azI —f« [-y 1o Processing Un

GWU GlobalVariable regisler Unit
SPU Sum and Product Unit

™ GWM DM

M Instruction Memory
DM Data Memory

Fig. Al FLATS2 functional diagram.

25

to ninth stage (EX1-EX4) integer and floating
point operations take place. Also, during the
sixth stage (GRW) a register write takes place,
writing the result of a simple integer arithmetic
operation or the result of the use of an address-
ing mode with side effect. In the tenth and final
stage (DMW) the result of an operation is
written to data memory.

FLATS2 implementation

The FLATS2 was implemented using 10K
and 100 K ECL technology and has a machine
cycle time of 65 ns. Physical memory is 5.5 MB.
A total of 27 boards measuring 47X 32 cm were
required for the implementation.

FLATS2 addressing modes

The FLATS2 has three basic addressing
modes (Table A1). In index mode, the contents
of a register (contains non-address value) is
added to the base address to form the effective
address. In offset mode, an immediate constant
is added to the base address to form the effective
address. And in pointer mode, the effective
address if formed by an immediate displacement
to the contents of a register containing an
address. Each addressing mode can include
either a pre/post increment/decrement side-
effect.

FLATS?2 instruction format

The FLATS2 has various instruction formats.
The M-format is the format for arithmetic opera-
tions (Fig. A3). Each instruction includes a
branch field jO which specifies the branch offset

(=] miumlqumlmeEn] EE

Fig. A2 FLATS2 pipeline stages.

Table Al FLATS 2 addressing modes.
Mode Notation Effective address Side-effect
Index base @ index BL: base+ index
Index push base @ > index BL : base+ index base « base+ index
Index pop base @ < index BL: base base «— base+ index
Offset base @ displ BL: base+ displ
Offset push base @ > displ BL: base+ displ base < base+ displ
Offset pop base@ < displ BL: base base «— base+ displ
Pointer base : displ (pointer) BL : pointer + displ
base : & address (index) BL : address + index
Pointer push base . > displ (pointer) BL: pointer + displ pointer < pointer + displ
Pointer pop base : <displ (pointer) BL: pointer pointer — pointer + displ
Index offset base @ displ (index) BL: base+ index+ displ
Pointer index base: displ (pointer) index BL: pointer + displ + index

26 Journal of Information Processing

[lovr[m [T o] o Horoe] ot [=]

Fig. A3 FLATS2 M-format instruction format.

of the branch to be taken on a successful mem-
ory access. If an access error occurs, that is, the
either the effective address or the base and limit
addresses are not a valid address or the effective
address falls outside the address range specified
by the base and limit addresses, the instruction
execution is aborted and the next instruction is
executed. If the branch offset specifies the next
instruction, the next instruction is executed when
no access error occurs. If an access error occurs,
an exception is raised.
(Received May 29, 1991)
(Accepted October 21, 1992)

Paul Spee (Member)

Paul Spee was born on April 15,
1960 in Dordrecht, the Nether-
lands. He received his M. S. degree
from the Delft University of Tech-
nology in 1986. From 1984 to 1986
he was employed by the Delft University of Technol-
ogy. From 1986 to 1991, he was a researcher with the
Quantum Magneto Flux Logic Project (ERATO). In
1991, he joined Unix System Laboratories, Pacific as
a technical manager. His areas of interest include
parallel architectures, operating systems, and parallel
and concurrent programming languages.

Eiichi Goto (Member)

Eiichi Goto was appointed
Assistant Professor, Associate Pro-
fessor and Professor of the Faculty
of Science, University of Tokyo in

1958, 1959 and 1970, respectively.
He was appointed Chief Researcher of RIKEN in
1968, Director of the Quantum Magneto Flux Logic
Project of JRDC in 1986 and Director of the Com-
puter Center at the University of Tokyo from 1987 to
1991. His main interests have been in the field of
Parametron Computer, Magnetic Monopole, Elec-
tron Beam Exposure System, Flux Transfer Joseph-
son Device (Quantum Flux Parametron) and High
Performance Supercomputer Architecture. He has
been awarded many prestigious prizes including a
commendation by the Minister of State of Science
and Technology for his research on the Parametron
in 1959, the Okochi Memorial Technology Prize in
1988 and the Purple Ribbon Medal in 1989 for his
research on the Variable Shape Electron Beam Expo-

sure System.

