
Journal of Information Processing Vol. 16 157–164 (Sep. 2008)

Regular Paper

Lightweight Vulnerability Management System

Takeshi Okuda
†1 and Suguru Yamaguchi

†1

To secure a network, ideally, all software in the computers should be updated.
However, especially in a server farm, we have to cope with unresolved vulnera-
bilities due to software dependencies. Therefore, it is necessary to understand
the vulnerabilities inside the network. Existing methods require IP reachabil-
ity and dedicated software to be installed in the managed computers. In ad-
dition, existing approaches cannot detect vulnerabilities of underlying libraries
and uniformly control the communication between computers based only on the
vulnerability score. We propose a lightweight vulnerability management system
(LWVMS) based on a self-enumeration approach. This LWVMS allows admin-
istrators to configure their own network security policy flexibly. It complies
with existing standards, such as IEEE802.1X and EAP-TLS, and can operate
in existing corporate networks. Since LWVMS does not require IP reachability
between the managed server and management servers, it can reduce the risk
of invasion and infection in the quarantine phase. In addition, LWVMS can
control the connectivity based on both the vulnerabilities of respective compo-
nents and the network security policy. Since this system can be implemented
by a slight modification of open-source software, the developers can implement
this system to fit their network more easily.

1. Introduction

Many software vulnerabilities have been reported, and remedies such as security
updates are developed by software vendors almost daily. Applying these security
updates or migrating to newer and safer software is a suitable way of securing
servers, clients, and networks. Although it is important to keep the software
components inside servers updated to remove security vulnerabilities, not all
software can be updated because of dependencies. For example, a groupware
may require a specific version of an enterprise database server that can run only
on an older OS. In this scenario, the user cannot dispose of the existing groupware
because building a new groupware will require extra time and money. Users must

†1 Graduate School of Information Science, Nara Institute of Science and Technology, Japan

manage the vulnerabilities inside their networks. Ideally, all software should be
kept up to date, but a more realistic solution is to recognize and understand
network vulnerabilities 1).

In order to understand these vulnerabilities, two main methods have been de-
veloped. The first is the active scan method, and the second is the agent-based
method. In the active scan method, security scanners scan all ports on the target
computer. This activity disrupts the services running on the target and gener-
ates numerous event logs on it. The scanning of the computer consumes resources
such as CPU and memory. On the other hand, the agent-based approach does
not affect the services, but requires dedicated software, referred to as an agent,
to be installed on the target computers. These agents scan registries and the file
system in the computer to search the installed software and libraries and employ
proprietary protocols between agent and manager, which monitor and control the
connection of computers to the network. The supported architectures and OSs
are limited and the agent has to follow changes in the OS design. These methods
are thought to be heavyweight methods from the viewpoints of the initial cost,
the maintenance cost, and resources consumption. Small and medium business
users cannot use these heavyweight methods to maintain the security of their
networks and require lightweight methods to manage their networks.

Although almost all of these methods target the clients’ security, securing
servers in a server farm is relatively important because the servers are always
online, and may include unresolved vulnerabilities due to software dependencies.
As a result, an administrator of the network has to manage the risk of extrusion.

We focused on securing a server farm and proposed a lightweight vulnerabil-
ity management system based on a self-enumeration approach that enables a
vulnerability check and isolates computers that have vulnerabilities that violate
the network security policy. Using this network security policy, the network
administrator can control the vulnerability inside the network flexibly. In this
architecture, standard protocols are used to maintain interoperability with the ex-
isting network facilities. Moreover, this architecture can incorporate an external
vulnerability database to reflect the vulnerability information updates quickly.

The remainder of this paper is organized as follows. In Section 2, we analyze
the requirements of vulnerability management. In Section 3, we describe the

157 c© 2008 Information Processing Society of Japan

158 Lightweight Vulnerability Management System

proposed lightweight vulnerability management system. In Section 4, we evaluate
the proposed system using the prototype system. In Section 5, we discuss related
problems. In Section 6, we present conclusions.

2. Analysis of the Requirements

Generally, a vulnerability management system follows a procedure like the fol-
lowing. 1) It gathers the information on the software installed in the managed
servers; 2) evaluates the vulnerability score; and 3) allows or denies connection.
Existing methods, such as Cisco’s NAC 2), use an agent approach that uses ded-
icated agent software installed on the computers. In the agent approach, when a
computer connects to a network, the computer is authenticated by a switch and
is assigned to the quarantine VLAN. In the quarantine VLAN, the computer
is inspected for applied software updates and patches. If the computer passes
the inspection, it is assigned the appropriate VLAN. The problem is that this
approach requires IP connectivity between the computers and the quarantine
server. If one computer has vulnerabilities and another is infected by malicious
software, the vulnerable computer in the quarantine network may be infected by
the malicious software. In addition, the agent software supports only major OSs
and hardware. This approach is used mainly to check the vulnerability of clients.

Other methods, such as Nessus 3) and Retina 4), use an active scan approach
that performs port scanning and detects the installed and running software to
gather information about the vulnerabilities. The problem with this method
is that there are some vulnerabilities that cannot be detected from outside of
the computer. For example, if a server software uses vulnerable libraries, these
vulnerabilities can be exploited even if the server software is not vulnerable in
itself. In addition, the scan activity consumes resources such as the CPU and the
memory and disrupts services running on the managed machines. This approach
is useful for checking the vulnerability of servers.

Especially in the server farm, we have to continue to provide a service even if a
server has some vulnerabilities when the server is providing an important service
only if the vulnerabilities can be managed by operational tips. The existing
approaches uniformly control the communication between computers based only
on the vulnerability score, ignoring the importance of service and the security

policy of the network.
These problems are summarized as follows.

P1 IP connectivity of the managed server is required, while gathering infor-
mation about the software components. This may result in an infection by
malicious software and the exploitation of software vulnerabilities.

P2 The active scan approaches cannot detect some vulnerabilities from outside
of the server. In addition, the scan activity disrupts the legitimate services
by consuming resources.

P3 There are barriers to developing, providing, and deploying agent software
when the vulnerability management system uses proprietary protocols.

P4 The existing approaches control communication uniformly based only on
vulnerability scores.

To solve the problems mentioned above, we have the following requirements
for the vulnerability management system.
R1 The system does not require IP connectivity until vulnerability assessment

completes.
R2 The system does not scan services running on the servers.
R3 The system complies with open standard protocols to be applied in the

existing network environment.
R4 The system controls the connectivity based on both the vulnerabilities of

respective components and the network security policy. This security policy
should be customized site by site.

3. Proposal of a Lightweight Vulnerability Management System

We propose a lightweight vulnerability management system (LWVMS) that
satisfies the requirements described in Section 2. This system assumes self-
enumeration of the installed software and libraries, which does not involve active
scanning. This LWVMS consists of the following four components.
LWVMS-C LWVMS-C is a software component installed on the managed

server. This acts as an IEEE802.1X 5) supplicant that sends informa-
tion about the software installed on the managed servers using standard
IEEE802.1X EAP-TLS 6). IEEE802.1X is an open standard for port-based
network access control at network switches and wireless access points.

Journal of Information Processing Vol. 16 157–164 (Sep. 2008) c© 2008 Information Processing Society of Japan

159 Lightweight Vulnerability Management System

Fig. 1 Example policy.

LWVMS-S LWVMS-S is a vulnerability management server that can talk with
LWVMS-C using RADIUS and EAP-TLS over authentication switches.

Authentication switch The authentication switch is an ordinary switch that
complies with IEEE802.1X port authentication.

VWS VWS is a web service that can provide vulnerability information. The
VWS stores the vulnerability information about a software, including the
software’s name, its version, its vulnerability description, and its severity
score.

We assume the vulnerability score to be in the form of a Common Vulnerability
Scoring System (CVSS) base score. The CVSS provides an open framework for
communicating the characteristics and impacts of IT vulnerabilities. The CVSS
consists of three groups: Base, Temporal, and Environmental. Each group pro-
duces a numeric score ranging from 0 to 10, and a vector, which is a compressed
textual representation that reflects the values used to derive the score 7).

3.1 Goal of the LWVMS
The goal of the proposed LWVMS is to allow or disallow computers’ connection

to the network based on both the security policy and the vulnerability assessment.
If the vulnerability score does not exceed the threshold in the security policy,
the LWVMS-C is connected to the network. Otherwise, the LWVMS-C cannot
connect to the network and cannot communicate with other computers in the
network. For example, for the policy defined in Fig. 1, Server A can connect
to the network because the security policy accepts the vulnerability scores of
low and medium. On the other hand, Server B cannot connect to the network
when the vulnerability score exceeds the threshold. This check is done regularly
to maintain compliance with the network security policy. When vulnerability
scores of the software are updated in VWS and a specific software exceeds the

network security policy threshold, the server with that software is disconnected
from the network.

3.2 Features
This LWVMS has the following features. 1) The vulnerability assessment is

performed without IP connection to other computers. This can eliminate the
risk of virus infection and invasion. This feature satisfies requirement R1. 2)
Because LWVMS uses a self-enumeration approach to collect the vulnerabilities
inside servers, LWVMS can get the vulnerability information about the libraries
used by server software. Since LWVMS does not have to scan servers to check
for vulnerabilities, legitimate services are not disrupted. This feature satisfies
requirement R2. 3) LWVMS complies with standard IEEE802.1X EAP-TLS.
This contributes to easing barriers to developing a customized LWVMS-C. As a
result, LWVMS can be deployed in existing network environments equipped with
retail IEEE802.1X compliant switches. This feature satisfies requirement R3. 4)
The network security policy can be configured in LWVMS-S. An administrator
can configure the security policy threshold for each software component. LWVMS
controls the IP connectivity based on both the vulnerability scores of respective
components and the network security policy. This feature satisfies requirement
R4. 5) Managed servers are checked for compliance with the network security
policy regularly. When a managed server violates the network security policy, it
is disconnected from the network. Thus, LWVMS satisfies all the requirements
described in Section 2.

3.3 Self-enumeration Approach
In the agent approach, the agent software must scan the registry and file sys-

tem to search installed software and libraries. In the active scan approach, the
scan activity consumes computing resources regularly. In addition, the scanned
results are not always correct in both approaches. To address these problems,
we developed a self-enumeration approach in which the administrator or package
system reports installed components. This approach relies on the administrators
of each PC to keep their networks secure.

3.4 Composition of the Certificates
First, all managed servers must have valid certificates: one certificate as their

own server certificate and other certificates for their software components, such

Journal of Information Processing Vol. 16 157–164 (Sep. 2008) c© 2008 Information Processing Society of Japan

160 Lightweight Vulnerability Management System

Fig. 2 Composition of certificates.

as server programs and libraries. LWVMS-C uses a series of the server certificate
and component certificates. The server certificates are signed by the authority or
network administrator (Private CA) to guarantee the identity of the server. The
component certificates are signed by the distributor or developer to guarantee
the identity of the component. These component certificates are issued to each
component in each managed server. We assume these certificates comply with the
X.509 8),9) specification. The server certificate is an ordinary Public Key Certifi-
cate (PKC) that has a subject DN pointing to the server and is issued by a trusted
authority. Since in LWVMS, the name, version, and release of the components
are used to obtain the vulnerability score, the component certificates have a CN
including the component’s name, its version, and its release in the subject DN
field. Although the TLS session is executed based on the server certificate and
the corresponding private key, the corresponding private keys of the component
certificates are not used in TLS sessions. To prevent the abuse of the component
certificates, they should be bound to the server certificate. To bind the compo-
nent certificates to the server certificate, the component certificates have an OU
pointing to the server certificates (Fig. 2). Since the component certificates are
signed by the distributor or the developer, verifying these component certificates
can prevent their abuse. Although these component certificates can be seen as
Attribute Certificates (ACs) 10), we used the PKC in our implementation because
the PKC is easy to handle.

Fig. 3 Overview of workflow.

3.5 Workflow Overview
The managed servers (LWVMS-C) have to have their own server certificate as

well as the signed PKC of LWVMS-S beforehand. In addition, LWVMS-C has
to obtain component certificates issued to the software components. LWVMS
executes the following steps to check the compliance with the network security
policy regularly (Fig. 3).
(1) When the LWVMS-C connects to the network, it should submit a series of a

server certificate and component certificates to the LWVMS-S through the
authentication switch by using IEEE802.1X EAP-TLS. At this point, the
LWVMS-C cannot communicate with other computers on the network. Be-
cause the LWVMS-C cannot access the vulnerability information, LWVMS-
C only has to submit a series of certificates and delegate vulnerability as-
sessment to the LWVMS-S.

(2) When the LWVMS-S accepts certificates from LWVMS-C, it separates
them into the server certificate and the component certificates. Next,
LWVMS-S verifies the validity of the server certificate using the PKC of
private CA and the component certificates using the PKCs of software
vendors.

(3) LWVMS-S gathers the vulnerability information for each component from
the VWS.

(4) LWVMS-S gathers the vulnerability scores inside the LWVMS-C and com-
pares these scores to the network security policy. If the vulnerability score
matches the network security policy, LWVMS-S opens the port on the au-
thentication switch to which LWVMS-C connects; otherwise, the port is
closed.

Journal of Information Processing Vol. 16 157–164 (Sep. 2008) c© 2008 Information Processing Society of Japan

161 Lightweight Vulnerability Management System

Fig. 4 Sequence overview.

(5) LWVMS-C determines from the authentication switch whether it can com-
municate with other computers through the authentication switch.

Note that communication between LWVMS-C and the authentication switch
is performed by EAP, and does not require IP connectivity of LWVMS-C. Com-
munication between the authentication switch and LWVMS-S is performed by
RADIUS/EAP 11) (Fig. 4). As shown in Fig. 4, this sequence complies with or-
dinary IEEE802.1X EAP-TLS. Since the communication between the authen-
tication switch and LWVMS-S has the RADIUS attribute EAP-Message, the

authentication switch does not need to understand the contents of the packet.
The authentication switch has to forward the packet from/to LWVMS-S and
LWVMS-C. This enables existing IEEE802.1X compliant switches to be used
with the proposed mechanism and the existing IEEE802.1X supplicant and au-
thentication server (RADIUS server) to be used in this mechanism with slight
modification.

4. Evaluation

To evaluate the proposed LWVMS, we implemented a prototype system and
conducted experiments. We show the details of the implementation of the pro-
totype system, along with quantitative and qualitative evaluation.

4.1 Prototype Implementation
We used open-source software to implement the proposed LWVMS. LWVMS-C

was based on an open-source IEEE802.1X supplicant called Xsupplicant 12). Since
the component certificates are not relevant to each other, the original Xsupplicant
cannot send a series of certificates that does not construct the CA path. We
modified Xsupplicant to enable this series of certificates to be sent.

LWVMS-S was implemented based on an open-source RADIUS server called
FreeRADIUS 13). We added approximately 600 lines of code to the EAP-TLS
module in FreeRADIUS to handle the series of the server certificate and the
component certificates. The obtained certificates are validated based on the
trusted CA described in the configuration file and are checked for the linkage with
the server certificate. Then, LWVMS-S gathers the vulnerability score related
to the component name, version, and release from the VWS. Finally, LWVMS-S
compares the vulnerability score to the security policy to decide the action.

As an external VWS, we used Project SIX’s Vulnerability Web Services (SIX-
VWS) 14). Since SIX-VWS provides an XML-RPC interface for external ap-
plications, we implemented an XML-RPC client in the LWVMS-S. Instead of
retrieving the vulnerability information from SIX-VWS every time LWVMS-C
connects, the VWS-watchdog module in the LWVMS-S fetches vulnerability in-
formation and caches it to a local database every 30 minutes. This interval can
be changed in the configuration file. The architecture of this prototype is shown
in Fig. 5.

Journal of Information Processing Vol. 16 157–164 (Sep. 2008) c© 2008 Information Processing Society of Japan

162 Lightweight Vulnerability Management System

Fig. 5 Architecture of the prototype LWVMS.

Table 1 Configuration of prototype system.

CPU Intel r© Core Duo 2.0GHz
memory 1GB
OS Fedora Core 6
Database PostgreSQL
Authentication Switch HP r© ProCurve 3400cl

Table 2 Components used in the experiment.

Name Version Release
Apache HTTPd 2.2.3 0

PostgreSQL 8.1.3 0
Tomcat 5.5.9 0
BIND 9.3.0 0
Postfix 2.1.3 0

Qpopper 4.0.7 0

4.2 Experimental Set-up
The prototype system consists of four PCs, one for LWVMS-S, one for LWVMS-

C, one for SIX-VWS, and one for the management console. All of the PCs
have an Intel Core Duo 2.0-GHz CPU, 1GB of memory, and Fedora Core6 and
are connected to HP’s ProCurve 3400cl authentication switch using 1000Base-T
Ethernet. The configuration of the prototype system is listed in Table 1.

We used several component certificates to check the functionality of the pro-
totype system, as listed in Table 2. In addition, we created a security policy
that allows and disallows network connectivity, as listed in Table 3 and used
vulnerability information from NVD 15). For the purpose of demonstration, we

Table 3 Security policy used in the experiment.

Name Threshold
Apache HTTPd med

PostgreSQL high
Tomcat med
BIND low
Postfix med

Qpopper high

Table 4 Comparison between LWVMS and existing approaches.

LWVMS agent approach active scan approach
R1 yes no no
R2 yes yes no
R3 yes no no
R4 yes no no

categorized the vulnerability score into three levels: low, medium, and high.
4.3 Experimental Results
Although during the vulnerability assessment, managed servers cannot com-

municate with any other computers using IP, LWVMS-S can gather information
about the installed software components. This satisfies requirement R1. Since
managed servers have component certificates and have to report these certifi-
cates to LWVMS-S, there is no need to scan services from outside the managed
servers. This satisfies the requirement R2. Based on the experimental results,
we confirmed that the prototype system can control the connectivity according
to the vulnerabilities of the respective components. When the managed server
has vulnerable software components that violate the security policy threshold,
it cannot communicate with any other computer. When the vulnerability in-
formation is updated, the information is reflected in the refresh interval of the
local database. This satisfies the requirement R4. This experiment can be per-
formed using an ordinary authentication switch and open source software because
LWVMS complies with standard protocols. This satisfies the requirement R3.
From the results, this LWVMS satisfies all the requirements. The comparison
between the LWVMS and the existing approaches is summarized in Table 4.

Although the processing time of the vulnerability assessment may vary due
to the implementation of the RADIUS server, the required time is at most one

Journal of Information Processing Vol. 16 157–164 (Sep. 2008) c© 2008 Information Processing Society of Japan

163 Lightweight Vulnerability Management System

second. The variation stems mainly from fragmentation and the interval of ac-
ceptance of the RADIUS packet. We conclude that the proposed mechanism
satisfies all the requirements and is practical.

5. Discussion

Through this study, we found several issues to be considered. From an opera-
tional viewpoint, VWS should be trusted by the network administrator. LWVMS
should authenticate VWS and the traffic from the VWS must be encrypted to
ensure the consistency of the information using IPsec and SSL. Additionally, issu-
ing certificates is a very cumbersome task. To reduce the overhead, we provided
a web interface to issue server certificates and component certificates semiauto-
matically.

In this proposal, we assumed that the administrators of each server in a server
farm are willing to cooperate to secure their network environment. The key
point of the self-enumeration approach is how honest every administrator can
be. As mentioned in Section 3.3, the LWVMS trusts the administrators of each
server and does not require tight coupling of a component and its certificate.
The component certificates are bound to the server certificate, and the paired
secret keys of the component certificate are not used in the process. There is no
means to guarantee the integrity of the component and its certificate. We hope
this matter can be solved by using attestation 16) and the integrity check function
of TPM 17), but other mechanisms must be developed in order to guarantee the
integrity of the installed software and libraries.

Vulnerability assessment must be done regularly. In LWVMS, configuring
the re-authentication interval of the authentication switch enables vulnerability
checks to be performed regularly.

6. Conclusions

To solve the problems of existing heavyweight vulnerability management sys-
tems, we proposed a lightweight vulnerability management system. This system
assumes a self-reported method to gather information about the components in-

�1 http://iplab.naist.jp/research/#pki

stalled in the computers. Since this system complies with standard protocols
and technology, it can be applied to existing network environments. Through
an experiment using a prototype system, we demonstrated the usefulness of the
proposed LWVMS. To make reproducibility experiment easier, we made the pro-
totype software used in our experiment available on our web site �1. The next
step is to integrate other technologies such as attestation and trusted computing
technologies.

References

1) Martin, R.A.: Managing Vulnerabilities in Networked Systems, Computer, IEEE,
pp.32–38 (2001).

2) Cisco Systems, Inc.: Network Admission Control (NAC) Framework.
http://www.cisco.com/

3) Tenable Network Security: Nessus Vulnerability Scanner. http://www.nessus.org/
4) eEye Incorporated: Retina Security Scanner.

http://www.eeye.com/html/products/index.html
5) IEEE: 802.1X-2004: IEEE Standard for Local and metropolitan area networks

Port-Based Network Access Control (2004).
6) Aboba, B. and Simon., D.: PPP EAP TLS Authentication Protocol, RFC 2716

(Experimental) (1999).
7) Chandramouli, R., Grance, T., Kuhn, R. and Landau, S.: Common Vulnerability

Scoring System, IEEE Security and Privacy, Vol.4, No.6, pp.85–89 (2006).
8) Housley, R., Polk, W., Ford, W. and Solo, D.: Internet X.509 Public Key In-

frastructure Certificate and Certificate R evocation List (CRL) Profile, RFC 3280
(Proposed Standard) (2002). Updated by RFCs 4325, 4630.

9) Housley, R. and Santesson, S.: Update to DirectoryString Processing in the In-
ternet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile, RFC 4630 (Proposed Standard) (2006).

10) Farrell, S. and Housley, R.: An Internet Attribute Certificate Profile for Autho-
rization, RFC 3281 (2002).

11) Aboba, B. and Calhoun, P.: RADIUS (Remote Authentication Dial In User Ser-
vice) Support For Extensible Authentication Protocol (EAP), RFC 3579 (Informa-
tional) (2003).

12) Open 1X project: Open1X.org. http://open1x.sourceforge.net/
13) The FreeRADIUS Server Project: FreeRADIUS The world’s most popular RA-

DIUS Server. http://www.freeradius.org/
14) Project SIX: SIX Vulnerability Web Services.

http://staff.aist.go.jp/nakamura-akihito/six/
15) National Institute of Standards and Technology: National Vulnerability Database.

Journal of Information Processing Vol. 16 157–164 (Sep. 2008) c© 2008 Information Processing Society of Japan

164 Lightweight Vulnerability Management System

http://nvd.nist.gov/
16) Maruyama, H., Seliger, F., Nagaratnam, N., Ebringer, T., Munetoh, S.,

Yoshihama, S. and Nakamura, T.: Trusted Platform on Demand (TPod), IBM
Research Report RT0564 (2004).

17) Trusted Computing Group: TPM Main Part 1 Design Principles (2007).

(Received November 30, 2007)
(Accepted June 3, 2008)

(Released September 10, 2008)

Takeshi Okuda received the M.E. degree in information sci-
ence from Osaka University in 1998. He is currently an assistant
professor in the Graduate School of Information Science, Nara In-
stitute of Science and Technology, Japan. His research interests
include network security, mobile agent technology and multimedia
application. He is a member of the IEEE.

Suguru Yamaguchi received the M.E. and D.E. degrees in
computer science from Osaka University, Japan, in 1988 and 1991,
respectively. From 1990 to 1992, he was an Assistant Professor at
the Education Center for Information Processing, Osaka Univer-
sity. From 1992 to 1993, he was with the Information Technology
Center, Nara Institute of Science and Technology (NAIST), Japan,
as an Associate Professor. Since 1993, he has been with the Grad-

uate School of Information Science, NAIST, where he is now a Professor. Since
April 2004, he has been an Advisor on Information Security in the Cabinet Secre-
tariat of the government of Japan. His research interests include technologies for
information sharing, multimedia communication over high-speed communication
channels, network security and network management for the Internet.

Journal of Information Processing Vol. 16 157–164 (Sep. 2008) c© 2008 Information Processing Society of Japan

