SOME USER-ORIENTED CONSIDERATIONS IN THE
DESIGN OF MEDICAL INFORMATION SYSTEMS

ABSTRACT

There are a broad range of factors which must be considered in order
to create interactive medical information systems which will be acceptable
to their users, in ease of use, in realiability, and in cost. This paper
proposes a methodology for designing and developing such systems, based
upon the principles of user engineering and software engineering. This
methodology, called user software engineering, requires a clear understanding
and precise definition of the problem, as well as attention to program
construction techniques, management of software development, testing, and
documentation.

Among the issues which are discussed are hardware and software reliability,
the role of modularity in achieving reliability, terminal selection, the
human/computer dialogue, and psychological factors in the design of medical
information systems. Illustrations of recommended approaches to handling
these areas are given. An attempt is made to show that virtually every
decision concerning the design, development, selection, evaluation, or
installation of a medical information system must be considered from the
standpoint of the users of that system.

INTRODUCTION

Over the past few years, there has been a noticeable trend toward increased
usage of on-line medical information systems, involving a growing number of
health care professionals. Among the various interactive systems developed for
medical use are clinical laboratory systems [1], automated interviewing
programs [2], medical record systems [3,4], and medication systems [5], to name
just a few. In some hospitals and clinics, the use of conversational programs
is very widespread and virtually every employee must interact with a
computerized medical information system [6].

One of the primary objectives in the development of all medical information
systems is that they be acceptable to the people who will be using them and to
those who are paying for them. Among the factors which determine the success of
medical information systems are the cost and cost-effectiveness of the systenm,
its reliability, its correctness both from the computing and a medical stand-
point, and the interface between the system and its users. In addition, another
important element in the production of a successful medical information system
is the working relationship that must be developed between those who are
designing the system, those who are building the system, those who are paying
for the system, and those who will eventually be using the system [7].

Despite the recognition of the importance of these factors, the history of
the development of medical information systems shows that a significant
percentage of such systems fail to meet the needs of their users and that many
systems go unused after a large developmental expenditure. There are a number
of primary reasons for these problems, including:

1) poor decisions on equipment selection;
2) unavailability of low cost, reliable, non-keyboard terminals;

1)



3) poor software development practices;

4) lack of good tools for the design of interactive computer programs, with
particular weakness in program testing and error prevention facilities;

5) design and implementation of medical information systems by persons
unfamiliar with the medical environmment or the health care delivery
systems;

6) inaccurate medical content;

7) user resistance to the introduction of information technology; and

8) failure to include psychological as well as technical considerations in
an overall systems design.

Because of the poor documentation of previous unsuccessful developmental
efforts, and the slow progress being made in overcoming some of the above
problems, these problems and others continue to make the design and development
of successful medical information systems quite difficult. In particular,
economical techniques for developing quality software have failed to advance
to the level required by the nature of medical data processing. Urgent medical
data processing needs have been forced to rely upon existing hardware and soft-
ware technology, with the result often being ad hoc systems which are uneconomic
and unreliable.

However, the goal of this paper is not to examine these reasons for failure
in more detail, but rather to suggest techniques which can be used in order to
design and develop medical information systems which are truly acceptable to
their users. With the increasing number of on-line systems under development
and the increasing cost of software development, it is desirable to identify as
many as possible of these potential trouble spots in advance, suggest workable
approaches to some of them, and thereby minimize the chances of thelr occurrence.
The methodology proposed relies both on the principles of user engineering and
the concepts of the emerging discipline of software engineering. An essential
step in this process is to focus en medical information systems from the
standpoint of their users, thereby making it apparent that the needs of the users
must take precedence over other considerations if such systems are to be
successful.

User software engineering is defined as the combination of software engineer-
ing principles with human factors considerations in order to produce a
satisfactory human/computer environment. Software engineering may be defined as
the application of principles, skills, and art to obtain economically software
that is reliable and works efficiently on real machines [8,9]. It therefore
includes the specification; design, development, management, testing, and
maintenance of software systems. User engineering may be defined similarly as
the application of principles, skills, and art to the creation of software
which is acceptable to its users in terms of ease of use, cost, and reliability.

Together, software engineering and user engineering require a broad range of
considerations by systems designers throughout the definition and development
process. Above all, user needs and desires must be carefully treated throughout
the software development process. The need to understand sufficiently and
define clearly the users' problems is established as a fundamental objective of
user software engineering. At the same time, attention must be given to hardware
selection, program construction techniques, program verification, management of
software development, testing and evaluation, and documentation. Sound program
development practices can favorably influence the operational characteristics
of any information system.

‘A high degree of user software engineering is desirable if information
systems are to be truly valuable to a wide range of potential users. This is
especially true in the design of systems for non-programmers, since they tend
to be less tolerant of computer problems than are programmers. This paper

(23



attempts to cover many of the various factors which must be considered when
designing an interactive medical information system.* These factors are quite
broad in scope, because of the wide diversity of persons who may use such a
system. The order of presentation of factors goes from the most quantifiable to
the less tangible, with the initial ones having a solid technical base and the
latter ones being largely subjective. The approach taken is to present a

general set of guidelines to be followed by systems designers and developers with
regard to each topic.

Emphasis is given to issues surrounding the computing environment for a
medical information system, rather than the medical content of a system. It
should be recognized, however, that both the computing environment and the
medical content must be acceptable in an operational system. Furthermore, of the
factors listed, different factors should be given greater or lesser emphasis
in specific systems, depending on the projected class of users for the system.
However, none should be ignored.

RELIABILITY AND INTEGRITY

The primary consideration in any computer system is that it be available and
working properly when the user wants to use it. Reliability is such an over-
riding concern that it should never be compromised against some other factor.
The ease of conversation, the elegance of software design, and the convenience
of the terminals are entirely irrelevant if the system will not work dependably
when the user needs it. This notion of reliability and integrity applies to
the hardware, the software, and the data involved in the complete system;
attention must be given to each of these factors.

Hardware

The notion of hardware reliability implies a high mean time between failures
for each hardware component. In some cases, when the need for availability on
a twenty~-four hour per day basis is essential, it may be necessary to replicate
part or all of the hardware in order to minimize the time that any system is
unavailable, and to have extra pieces of equipment available for replacement of
faulty components such as terminals. The hardware needs often extend beyond the
computer system itself and include electrical power and possibly lighting or air
conditioning.

From the standpoint of reliability, hardware modularity has been shown to be
extremely valuable in avoiding the cost of replicating an entire system. If the
hardware is a single, indivisible central processing unit, the failure of any
component within that unit will cause the entire system to fail, making it
impossible to do any productive work until the failure has been repaired or a
back-up system has been activated. In a modular configuration, however, it is
possible for part of the system to fail and still allow processing to be done
by those parts of the system which remain in working condition. In most cases,
the absolutely critical processes can continue to work.

Consider, for example, the processing needs of hospital information system
for a medium to large scale hospital. Such a system must be available, at least
to a limited degree, at all times. If the system is configured around a single
processor, the desired level of system availability can only be achieved through
the existence of a back-up processor which can be quickly brought into action if
the primary processor fails. Alternatively, however, consider the use of a
number of smaller processors to replace the single central processor. Each of

*Many of these factors are also applicable when selecting a medical information
system from a vendor.

€33



these smaller processors could be placed in a central area where each would

serve one hospital department, with one of these computers connected to all of the
others to allow communication among all of the departments [10]. If one of the
small computers serving one of the nodes of this "star" network should fail, only
that particular department is affected by the failure. Other departments would
continue to have operating computers and are only affected by their inability to
exchange data with the department whose system has failed. If all of the
computers in the system are compatible, then one extra computer can serve as a
back-up for all of the other systems, including the central communications
processor, and system 'down-time" would be minimal. In this way, a high degree
of reliability can be achieved for a relatively low cost.

Software

Software reliability is, of course a key issue in software design, as efforts
are made to develop techniques which lead to the creation of correct programs.
Much work has been done recently on program testing, program debugging, proofs
of program correctness, and other related notions [11]. Attempts to create
correct programs have resulted in better understanding of program control
structures, which has led to the notions of structured programming [12], as one
means to develop programs which can be verified easily. There are some rather
significant software requirements in order to develop absolute reliability in an
interactive system. Since a user at a terminal may enter incorrect data which
may lead to an execution error and unexpected program termination, it is
necessary to create "fault tolerant” software. In order for computer programs
to achieve this, it is necessary for the conversational program to be able to
treat every possible user response as a meaningful response, rather than
assuming the proper input will always be made. In addition, the program must be
prepared for other kinds of error conditions which may arise, including the
following:

1) input-output errors;

2) no input at all, possibly due to a broken connection between the
terminal and the computer; and

3) a hardware failure.

Virtually no presently available programming language contains all of the )
features needed to provide this degree of reliability. In many languages, for
example, it is very difficult to trap arithmetic overflows or invalid array
subscripts, thereby making it possible for the user to cause a program to fail
unexpectedly, for the user to lose all or part of his work, or for the user to
receive a meaningless meSsage. A lack of adequate features for the development
of fault tolerant software discourages programmers from building in these
important user-oriented features, since control of certain of the errors
requires a considerable amount of programming effort.

One technique which has been shown to be extremely useful in software
development is modularity. Software modularity refers to the systematic
programming techniques which should be used to build reliable software [13].
Practical history and the recent development of computer systems has shown
program modularity and organization to be vital for project success. Various
components in a system must be carefully separated and designed and then
combined with a sensible sequence of module construction [14]. An overall
stepwise refinement of system design can be used to assist in integrating the
modules to perform the various tasks [15].

The advantages of this approach are numerous, including the ease of
modification of individual units, the ability to identify and replace those
modules which are performing incorrectly or inefficiently during the development
stages, and the improved logical organization which results in breaking a large

C4)



task into a number of smaller ones by proceeding from an abstract problem
statement through a series of stepwise refinements to a complete program. This
modular approach to program development also leads to increased reliability of
the finished software, since it simplifies the testing and debugging procedures.

Data and Security

In addition to reliable hardware and software, there must be reliable data
storage. Every effort must be made to preserve the integrity of data to make
certain that no data are lost. Therefore, there should be replication for off-
line storage, or an audit trail, so that any lost data can be easily recreated.
Most users will not tolerate a situation which forces them to reenter data
because of program or system failure. Also, the ability to alter the data base
should be severely restricted and a verification of data base changes should be
required as a means to preserve accuracy.

Closely related to reliability of data storage are the issues of security
and confidentiality. Adequate security is necessary for overall reliability of
the information system, and for protection of the data from unauthorized access.
Users of the system should only have access to those pieces of the data which
they '"need to know," with adequate checking of persons using the system and its
files. There can be an additional level of passwords for access to particular
programs or data, and there should be protection for the programs running on the
system so that they do not interfere with each other and so that they cannot be
modified in such a way as to permit improper use of information [16].

Adequate security, then,is necessary for overall reliability of the system
and its data. Unprotected or unreliable hardware, software, or data, within a
medical information system, can easily lead to failures in system performance,
errors in medical treatment, and unauthorized access to and dissemination of
confidential information.

EASE OF USE

It can be argued that the primary consideration of any information system is
the manner in which the users work with the system [17]. This consideration
involves terminal devices, man-machine dialogue, and a large number of
psychological considerations, all of which must be satisfactory for the users.
While this argument ignores the importance and difficulty of achieving
reliability, security and modularity, one can easily make the case that those
factors are rightfully not the user's concern and should be taken for granted by
the user. Indeed, the system designer should often taken this view when working
with nonprogramming users, so that careful attention can be given to definition
of the problem, structure of the software interface, terminal selection, and
other user-oriented issues. Then, those features can be incorporated in a
software system which exhibits all of the features discussed above.

The Hardware Interface

In an interactive medical information system, choice of terminals and
input mechanisms is extremely important to the users of the program, since the
terminal will be the sole contact with the system for most users. If the user
is not comfortable with the terminal, then the user will be uncomfortable with
the entire system. Therefore, system designers must take into consideration the
types of users of the system when selecting terminal devices. There are also
a broad range of terminal features to be compared.

For example, a system to be used by persons whose job requires typing might
be based upon teletypewriter terminals with keyboard input, since those users

(53]



can type; a system which requires typing by persons who do not neormally type

is far less likely to be successful, since those users are not trained typists
and generally dislike having to type. For this latter class of users, alternate
input methods and terminals must be explored, and weighed against training
people to use a keyboard.

Similarly, the location of terminals, the noise produced by terminals, and
speed of their output are also important factors. The noise produced by
a typewriter-like terminal is generally too great to make such a terminal
acceptable on the wards of a hospital, but the same terminal might be acceptable
in an office area. Terminal output rates can vary from ten to approximately
1,000 characters per second on a conventional terminal, with even higher rates
available on some frame-oriented systems. In some applications, low speed
terminals will suffice; for many applications, however, a far greater speed is
necessary for user satisfaction or for the volume of output.

Thus, there is no type of input device or output device that is to be
universally favored. It should be recognized, though, that more expensive
devices, including high speed, low noise printers, and a variety of sophisticated
input devices, such as light pens and touch screens, are often necessary
expenditures to achieve user acceptability of a medical information system.

There is often an interesting tradeoff here; for example, if a medical
professional is unwilling to type more than a single character in response to
a program-generated query, a frequently used alternative is to provide the
user with a variety of choices from which to select one. This decision,
however, means that the list of alternative choices must be presented very
rapidly, thereby requiring a higher speed output terminal, since a lengthy delay
in presenting the alternatives may be equally unsatisfactory.

These types of considerations play a major role in the broader issues of
hardware selection for medical information systems. The key problem in these
systems is usually not one of computational speed, but rather one of information
transfer. It must be possible to retrieve a given piece of data and display it
to the user very rapidly, if the system is to be widely accepted. For this
reason, many medical information systems can best be thought of as communication
systems, with a primary decision factor being the transmission rate between a
secondary storage device and a terminal. Traditional factors of computer
selection, such as core memory and cycle time, must now be balanced against
such factors as the availability of multi-ported memory and the availability of
secondary storage devices with low latency times. Thus, a diversity of factors,
including noise, expected volume of output, required speed of output, and input
mechanisms, along with response time (see below), must all be considered when
selecting computer hardware for use in medical information systems.

All of these user-oriented criteria must be applied to the selection of the
central processor, the secondary storage devices, the input and output devices,
and the communications subsystem, bearing in mind that those features which are
most attractive to programmers are not necessarily most attractive to a non-
programmer. A serious deficiency in this area almost certainly leads to wide
user dissatisfaction with the medical information system and can thereby render it
ineffective.

The Software Interface

The software interface may be defined as the dialogue between the computer
system and the user and is in many ways the most important aspect in the design
of user-oriented systems. The format of the output(s) presented to the user and
the required format(s) of user. input(s) are hard to define, but are crucial
factors in overall system development. For this reason, it is especially

6



important that the system designers develop a thorough understanding of each

user task and the precise terminology used in the performance of that task, so

as not to present the user with a new set of tasks to be performed or with a
large number of unfamiliar terms. This problem is especially noticeable when one
institution "imports" a medical information system being used by another
institution. Unfortunately, procedures and terminology vary considerably from
one institution to another, so that a system which is effective in one site may
fail in another, even though it may have been entirely satisfactory in its
original site.

Interaction computer programs have a 'personality" which may be rigid and
inflexible on one hand, or helpful and forgiving on the other. It is desirable
to develop programs which are "soft," tailored to ease of use, rather than "hard!
designed for ease of processing. It should be remembered that two of the key
objectives of user software engineering are minimizing the amount that the user
has to learn about the computer, and maximizing the degree to which an inform-
ation system can assist that user in performance of a job.

One of the most essential achievements in developing a "soft" personality is
computer system invisibility. The typical nonprogramming user knows little or
nothing of computer sciences and regards the computer only as a tool which may
be able to assist him in his work. Error messages should be expressed in terms
of the user's task, interaction with a system job control language should be
minimized, and there should be no necessity to learn about technical details
such as data base structures and disc files.

Among the considerations which must go into the construction of the human/
computer dialogue are a number of "user-oriented" features, including ease of
learning and remembering how to use the system, flexibility of usage for skilled
vs. unskilled users, error correction and prevention, and on-line assistance,
allowing the user to interact in a "natural" way with the program, without having
to learn cryptic codes or type lengthy amounts of information in a precise
format.

Consider the issue of flexibility. Since different users will have
different degrees of skill in working with the system, there should be
facilities to accommodate these varying levels. Lengthy output messages and
explanations can often be reduced or suppressed for experienced users. Another
problem with flexibility is that different people have different mental
organizations and work habits, and that different people will wish to make
different types of information requests from a data base. For example, a
physician or nurse ordering laboratory tests may want to specify all of the
tests to be conducted on a given patient, while the clinical laboratsry may
alternatively wish to list all of the patients on which a given test is to be
run. The ability for a medical information system to handle these orthogonal
reqyests requires considerable flexibility in system design. Some of the
research and development currently under way in the field of relational data
base management [18] should be extremely helpful in this regard. From the
standpoint of the system designer, he must be able to strike a reasonable
balance between a rigid, inflexible system and a totally general system which
would serve everyone's needs, but at great development and operational expense.

A related need is the ability to correct errors quickly. The physician, for
example, should be able to eliminate orders as quickly as make them, without
disturbing valid orders. A system which forces its users to delete and re-enter
a sizeable segment of information in order to correct a relatively minor error
places an unnecessary demand upon its users. This need for error correction
facilities is especially important in medical applications when data are used
for patient management. Incorrectly entered laboratory results, for example,
can easily lead to improper diagnosis or treatment of a patient. Difficulty in

€73



making corrections can cause errors to be propagated through the system, thereby
making it undependable for patient care.

Efforts must also be made to prevent errors before they occur. A set of
orders for a patient should be displayed as a group before they are accepted
by the system. In addition, the program should perform some kind of
"reasonability check" in order to guard against errors, and should require
verification by the user for seemingly unreasonable input. A program action
should be provided for every possible response that the user might make, so that
no user input can cause the system to fail.

Although there are other factors which could be included in the design of
the software interface, these considerations serve to illustrate the complexity
of a problem and the need to give it careful attention throughout design and
development. The factors cited here must be supplemented by thorough planning
and system design, combined with those programming techniques suggested above,
so that development and modification of the software interface can be made a
straightforward matter. This last point is especially important since no medical
information system is entirely acceptable to its users in its initial version.

EASE OF CHANGE

Medical information systems must be designed for a dynamic, rather than for
a static, environment. The designers must assume that the computing equipment
will change, the programming and system development staff will change, and that
the nature of the task performed by the system will evolve in time, as
institutional procedures are modified, and as information requirements change.
Failure to provide for these types of changes will result in a rigid system
which cannot easily respond to advances in hardware technology, the loss of a
key staff person, changes in the human/computer interface, or new reporting
requirements. Such a system may sifisfy users initially, but can quickly become
unacceptable. As a result, portability and adaptability of programs becomes an
important issue to users of medical information systems. Poole and Waite [19]
have defined portability as a measure of the ease with which a program can be
transferred from one execution enviromment to another and adaptability as a
measure of the ease with which a program can be altered to fit differing user
images and system constraints.

Considerations of portability and adaptability suggest the need for a
strong attempt to preserve machine independence. They suggest the use of
modular programming techniques as discussed above in order to simplify program
modification. They also favor very strongly the use of higher level languages,
particularly those languages for which there is a recognized machine-independent
standard. Experience has shown that fully half of the cost of a major software
system is associated with its maintenance and with conversions to new equipment.
Thus, readability of programs, clear documentation, and an avoidance of
programming "tricks" must be balanced against the traditional measures of
efficiency in order to develop information systems which can have a long
lifetime, without depending upon particular persons or equipment for their
continued useful existence.

PSYCHOLOGICAL FACTORS

The eventual acceptance of an information system into routine usage is
often dependent upon a number of psychological and related nontechnical issues,
rather than upon the mechanical aspects of the system. Failure to consider
these essential psychological issues will often produce an information system
which will be rejected by those for whom it was supposedly designed and

(8)



developed. These factors which affect user attitudes include the general
previous disposition of the user toward computerized information systems, and
the process by which system development and introduction is undertaken, along
with the operational characteristics of the system as noted above.

Predisposition of users toward information systems is something which must
be considered before one even determines whether to go ahead with building a
system. In some organizations, it is extremely difficult to get the degree of
support needed at all levels to make a system work effectively. There is often
a wide difference between the users of a system and those who pay for its
development and operation. - Similarly, the structure of some kinds of organiza-
tions is better suited to development of such systems than are others.

By far the most important predisposition attitude is that of personal threat.
Computer systems can represent an ego threat by appearing to do a job better than
a human and an economic threat by appearing to be able to replace them in their
jobs. It is certain that an individual whose ego or income is threatened by a
computer system will be opposed to it and will make a considered effort to make
the system fail. The concept of personal threat is taken most lightly by system
designers, perhaps because information systems are not a threat to them. The
developers of the Community EKG Interpretation Service took these fears into
account, going to considerable effort not to threaten or displace human EKG
readers while still tyring to provide a rapid, computerized EKG analysis to a
remote location [20]. By simply labeling the computer's interpretation
"UNCONFIRMED" and by continuing to use the human readers for verification and/or
correction of the computer analysis, intellectual superiority of the humans was
affirmed and the readers continued to collect their fee for reading the EKG
trace. At the same time, though, the computer analysis was completed in a few
minutes, providing a much more rapid response than was previously possible, with
a fairly high level of accuracy, thereby assisting in the care of patients with
cardiac problems. It seems certain that this EKG system would have been
unsuccessful had its developers simply tried to replace the human EKG readers.

The second important psychological area is that of system development and
introduction. First, users must be participants at all levels and stages of the
development or selection of the medical information system, rather than having
the system imposed upon them. The system designers thereby obtain a first-
hand view of the way that the user performs his job, and of that user's real
information needs. Closely related to this area is that of user training. The
users must be provided with adequate introductory and reference documentation,
personal instruction and, ideally, on-line assistance. The purpose of this
training is to make the user community largely independent of the system
development team, making it possible for users to solve their own problems
within a short period of time after the system has been implemented.

One of the most effective techniques for system design, testing, and training
is to have several users participate in the design and development process. This
small group of users, with its strong knowledge of the functional details of the
system, can then teach use of the system to everyone else.

Several operational characteristics are also important in acceptance of a
medical information system. Of those not previously discussed, one of the most
important is that of response time. Both speed and variability of response time
are important issues in user psychology. Estimates of maximum acceptable
periods for response time range from a fraction of a second up to about two
seconds for the system to respond to "normal" requests. Similarly, two inputs
of similar complexity should have approximately the same response time. When
response time is too long or too erratic, there is a tendency for the user to
lose a train of thought and this leads to a higher degree of errors, which,
while not directly attributable to the computer system, can be reduced by better

€9



response characteristics.

By far the most important psychological consideration, however, is
interpersonal communication. The successful design and development of a
medical information system requires the close cooperation of health care
professionals, computer professionals, industrial engineers, and management,
since extremely few people possess knowledge in all of these areas. 1In
addition to extremely diverse backgrounds, education, and terminology, various
individuals will have widely differing perceptions of the functions of a medical
information system. For this reason, it is extremely important to give lengthy
attention to the total design of a system, making certain that everyone agrees
on the proposed capabilities and limitations of the system. When implementation
,is"begun prior to the completion of an agreed-upon design, it is almost certain

"that there will be proposed changes in the system specification, once everyone
understands the ramifications of existing design decisions. The result of such
changes is that the design becomes a "moving target" and the complexity of
implementation is greatly increased, thereby disrupting the planned software
development procedure.

These psychological factors vary widely among individuals and organizations,
thereby making it difficult to provide definitive guidelines for handling these
‘problems. However, it is clear that there is a great need to obtain better
understanding of these psychological considerations in the design of medical
information systems, and to give them attention throughout system development
and design.

CONCLUSION

Although this paper attempts to list a number of important user-oriented
considerations in the design of medical information systems, the list is by no
means complete. For example, every institution and organization has its own
internal political problems which must be overcome. In many institutions, the
history of previous successes and failures must be taken into account. Even more
important are the economic considerations in the system design. Many economic
decisions impinge directly on the degree of user orientation that will be
available on a given system. For example, a requirement to reduce costs may
result in a less acceptable terminal being selected. Furthermore, measurement
of cost benefit, cost effectiveness, or cost justification is often very
difficult if not impossible [21]. In summary, following these suggestions is
not a guaranteed formula for success; however, failure to follow a significant
number of these guidelines will almost certainly guarantee disaster.

Unfortunately, the lack of adequate software tools, and of inexpensive
non-keyboard terminals cited above, continue to be problems [22], which will
continue to result in unsuccessful systems. Much more research and development
needs to be done in this area. The need to develop low cost computer hardware
with sufficient software for use in on-line medical informaton systems has
become apparent. There are now educational programs in medical information
science whose goals are to train persons capable of designing, developing and
evaluating information systems for health care [23,24]. Also, the nature of
the human/computer interface is becoming better understood and is being taken
into greater consideration as designers recognize the shortcomings of other
systems, although more rigorous experiments need to be undertaken. Eventually,
the present technological reasons which have hampered widespread use of
medical information systems will disappear.

In summary, it should be clear that virtually every decision that is made
concerning the design, development, selection, evaluation, or installation of a
medical information system must be considered from the standpoint of its effect

(103



upon the users of the system. Development of user-oriented medical information
systems will almost certainly lead to more efficient utilization of the time of
medical professionals, to improved flow of accurate information within an
institution, and eventually to improved health care delivery.

ACKNOWLEDGMENT

This work has been partially supported by grants from the National Library
of Medicine (LM 00153) and the Commonwealth Fund.

11



REFERENCES

[1]

[2]

[3]

[4]

[s]

Le]

[7]
(el
[9]

[10]

[11]
[12]
[13]

[14]

[15]

Williams, George Z. and Williams, Robert L. ''Clinical Laboratory
Subsystem,' in Hospital Computer Systems, ed. M. Collen. New York:
John Wiley and Sons, 1974, 148-193.

Budd, M., Bleich, H., et al. '"'The Acquisition of Medical Histories by
Questionnaires,' National Center for Health Services Research and
Development, U.S. Department of Health, Education, and Welfare, 1970.
Publication HSRD-70-13.

Anderson, J. and Forsythe, J. M. (eds.) Information Processing of Medical
Records. Amsterdam: North Holland Publishing Company, 1970.

Justice, N., et al. '"Design and Development of a Medical/Management
Information System at the Harvard Community Health Plan," Proceedings of
the 1974 National Computer Conference. Montvale, New Jersey: AFIPS Press,
1974, 159-166.

Goldberg, M., et al. "A Drug Data Bank: Specific Problems in Connection
with the Nature of Informations and Operating Methodology,'" MEDINFO 1974,
869-874 (preprints). [Similar paper in Journees d'Informatique Medicale
Toulouse, Institut de Recherche d'Informatique et d'Automatique, 1974,

v. 2, 287-300.]

Norwood, D. "Introduction of a User-Oriented THIS into a Community
Hospital Setting--Introduction and System Description,”" MEDINFQ 1974,
Amsterdam: North Holland Publishing Company, 1974, 295-298 (preprints).

Collen, M.F. '"General Requi?éments," in Hospital Computer Systems, ed.
M. Collen. New York: John Wiley and Sons, 1974, 3-23.

Naur, P. and Randell, B. Software Engineering, Brussels: NATO Scientific
Affairs Division, 1968.

‘Beckmann, M., et al. (ed.) Advanced Course on Software Engineering,

Berlin: Springer-Verlag, 1973.

Blois, M.S., and Henley, R.R. ™"Strategies in the Planning of Medical
Information Systems,"” Journees d'Informatique Medicale, St. Lary,
Institut de Recherche d'Informatique et d'Automatique, 1971.

Hetzel, W.C. (ed.) Program Test Methods. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1972.

Dijkstra, E.W. '"Notes on Structured Programming,'" in Structured

Programming, ed. 0.J. Dahl, et al. London: Academic Press, 1972, 1-81.

Wirth, N. Systematic Programming: An Introduction, Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1973.

Liskov, B.H. "A Design Methodology for Reliable Software Systems,"
Proceedings of the 1972 Fall Joint Computer Conference. Montvale, New
Jersey: AFIPS Press, 1972, vol. 1, 191-200.

Wirth, N. '"Program Development by Stepwise Refinement," Communications of
the Association for Computing Machinery, vol. 14, no. 4 (April, 1971),
221-227.

€12



[16]

[17]

{18]

[19]

[20]

[21]

[22]

[23]

[24]

Hoffman, L.J. (ed.) Security and Privacy in Computer Systems.
Los Angeles: Melville Publishing, 1973.

Martin, J. Design of Man-Computer Dialogues. Englewood Cliffs, New
Jersey: Prentice-Hall, 1973.

Codd, E.F. "Recent Investigations in Relational Data Base Systems,"
Information Processing 74. Amsterdam: North Holland Publishing Company,
1974, 1017-1021 (preprints).

Poole, P.C. and Waite, W.M. "Portability and Adaptability," in Advanced
Course on Software Engineering, ed. M.Beckmann, et al. Berlin:
Springer-Verlag, 1973, 183-277.

Elliott, R.V., et 2l. "Computer Assisted Electrocardiography in
Community Hospitals," in Computers and Biomedical Research, v. 4,
ed. R.W, Stacy and B.D. Waxman. New York: Academic Press, 1974, 151-170.

Klarman, H.E. "Application of Cost-Benefit Analysis to Health Care
Systems Technology," in Technology and Health Care Systems in the 1980's,
National Center for Health Services Research and Development, U.S. Dept.
of HEW, 1973, Publication HSM 73-3016.

Davis, L.S. "Problems Facing Large Health Information Systems,"
Proceedings of the 1973 ACM National Conference. New York: Association
for Computing Machinery, 1973, 1-2.

Blois, M.S. and Wasserman, A.I. "A Graduate Program in Medical Information
Science," MEDINFO 1974. Amsterdam: North Holland Publishing Company,
1974, 217-222 (preprints).

Anderson, J., et__al. '"Educational Requirements for Medical

Informatics--Results of the First International Study," MEDINFO 1974.
Amsterdam: North Holland Publishing Company, 1974, 207-211 (preprints).

{13)



