PROBLEMS WITH THE IMPLEMENTATION OF STANDARD MUMPS

Jerome C. Wilcox and Richard F. Walters

University of California at Davis
Department of Human Physiology, Davis, CA 95616

This discussion focuses on the implementation of MUMPS in multi~language
environments, rather than considers only dedicated systems. There are two
reasons for this choice. First, the passage of Standard MUMPS at the recently
concluded MDC (MUMPS Development Committee) meeting makes a discussion of the
difficulties which we encountered with our implementation of the Standard timely.
Second, the paper by Sias and Covert (1975) describing an implementation of
Standard MUMPS under the UNIX operating system (Ritchie and Thompson, 1974)
prompts us to complement their report with a discussion of our own efforts.

As long as Standard MUMPS is being implemented on a machine totally ded-
jcated to MUMPS and MUMPS is, in fact, the operating system, the Standard can
be implemented in its entirety. However, within the enviroument of a general
operating system, there are restrictions which may cause problems in imple-~
mentation of the complete Standard. Sias and Covert show that it is possible
to implement MUMPS on a minicomputer under a general operating system; hence
implementation problems may exist outside of the large computer environment
with which we are most familiar. In both situations, modifications of the
operating system to support MUMPS are impossible; the implementor is forced
to accept certain features provided by the operating system. These include
control of user access to the system itself, conventions for input/output,
terminal handling, file access, and security. As an example, the Standard
originally contained references to specific characters from the terminals
being used to control specific actions. These specifications were replaced
by more general ones when it became known that the characters selected were.
used for other purposes by the operating systems of several large computers.

Additionally, in the multilanguage environment, the user commumity is
extremely diverse, there is competition for resources of the computer and,
quite often, users must pay for the resources used. Of course, the simplest
solution to the problem is to buy or lease a MUMPS "machine”, but in many
university and corporate systems this is not always practical. Increasingly,
restrictions are being placed on computer acquisition for specialized purposes,
forcing the use of existing equipment. Many institutions also pemmit or
require sharing of a data base in a manner facilitated by having easy
access to languages and programs other than MUMPS. Whatever the reasons,
many users are finding it necessary to turn to a MUMPS implementation under
a general-purpose operating system. At the University of California, Davis,
we have been involved in three implementations of Standard MUMPS on large
mainframe computers: the IBM System/360 and System 370, the Burroughs 6700
and the DEC PDP-10. In each of these implementations certain problems have
arisen requiring compromises with Standard MUMPS, These problems may be

(1)

categorized into three groups: conceptual difficulties, impossible features
and incomplete specifications.

Conceptual difficulties are those features specified in the Standard
which do not readily fit within the general operating system environment or
within the specific hardware. The most obvious of these is the specification
in the Standard of the use of the ASCII character set, as defined by ANSI
X3.4-1968. It is important to realize that- ANSI standards are voluntary,
not mandatory standards. In the computer arena, minicomputer manufacturers
have generally adopted the ASCII standard, while large mainframe manufac-
turers have not, preferring to use BCD, as on the CDC computers, or EBCDIC as
on IBM and Burroughs equipment. Users of these large mainframe computers
are generally familiar with the BCD or EBCDIC character sets and find them
comfortable to use. Conversely, they are not at ease with ASCII and would
prefer to be spared the unnecessary mental effort of switching chara
sets. Although ways may be found to operate in simulate
these machines, these techniques frequently introduce a mxgw
system overhead, increasing the execution costs. The ;
this problem involve portability of routines, both in tevus
and in terms of use of the $ASCIT and $CHAR functions, and Follows
Pattern Match operators. In general, interchange is uot roblem since
ASCII media may usually be both read and written. Howaver, use of the
above-mentioned functions and operators does create a problem.

Paralleling the use of ASCII, MUMPS, being an operator—-loaded language,
‘relies quite heavily upon the use of all of the punctuation characters of
ASCII. Many of these characters do not exist on other devices. TFor example,
the IBM 2741 terminal does have the caret, the backslash, the left bracket
or the right bracket characters. It was therefore necessary to find substi-
tute characters which could be used. This was dome, but again the user
must learm to adapt.

A final example of conceptual difficulty is illustrated by the file-
handling capabilities of MUMPS. The portability requirements for MUMPS
specified a string length of 255 bytes. This choice may be adequate for
internal string processing, but when MUMPS is to be used for file processing
it is totally inadequate. We have files with record lengths in excess of
7,000 bytes, and would like to find some way in which to process these
files using MUMPS.

In addition to these conceptual difficulties, there are several features
defined in the MUMPS Standard which are either impossible or extremely
expensive to implement. The most cobvious are the timeouts specified as
part of several commands. These features proved impossible to implement on
the System/360. They can be implemented on the B6700 but only at an unrea-
sonable cost. On that machine, programs which use the timer features do
not run as normal timesharing jobs; rather, they are run as batch jobs
which communicate with terminals. This has two impacts on the user. TFirst
of all, there is an additional 10% surcharge imposed by the accounting

(2)

system for jobs of this type at our campus. Second, severe response time
degredations may occur as the job is under the working set manager of the
operating system. This feature may thus result in response delays as long
as ten minutes, clearly unacceptable to the user at the terminal.

An additional problem is posed by the single-character read, as speci-
fied by the Standard. On most timesharing systems, a message discipline is
imposed by the operating system, usually requiring some sort of end-of-
message character before any of the transmitted characters are seen by the
object program. This characteristic makes implementation of the single-
character read impossible. Also, a large number of the CRT terminals now
available make use of local buffering of input so that editing and error
correction may be done prior to transmitting any part of the message to the
computer. Since the author of a MUMPS program may have no idea what type
of terminal is to be used, inclusion of the single character read is a
serious threat to program pertability.

The final class of problems to be dealt with consists of those created

%y incomplete specifications in the Standard. Thus far, we have encountered
: a7 Ly whlcb such problems occur. The first is the general area of

ut/output. o most cases, the entire problem may be summarized by
“at1ng that the Standard lacks a complete and cohesive specification of
inputfoutput in the MUMPS language. Partially, this lack stems from the
failure to consider computers other than dedicated minicomputers as vehicles
for the MUMPS language. Even most important, however, is the extreme
difficulty of completely specifying input/output in a computer language.
Most other languages which have been standardized have chosen delibérately to
omit specification of I/0 in this reason. It is our opinion that this is
not a viable approach. Instead, we believe that the difficult task of
gpecifying complete I/0 syntax and semantics must be undertaken to avoid
problems. As an example, consider the ambiguity of the meaning of the
MUMPS READ and WRITE commands when the device addressed is other than a
terminal. The commands are non-reflexive; that is to say READ A,B is not
necessarily the reverse of WRITE A,B. The difficulty in this case stems
from the lack of definition within the Standard of what constitutes a
record from an I/0 device.

The other area in which we have found the Standard lacking is that of
mathematical functions. Although we have seen a continual growth of the
MUMPS language in terms of non-medical uses, as evidenced by the larger
sections devoted to such papers in recent MUG meetings, the Standard has
not kept pace. Even though floating-point arithmetic was included in the
Standard, functions to make use of this capability were not included.

These features must be included in each implementation if the value of the
MUMPS language outside the restricted medical community is to be increased.

In conclusion, we would like to emphasize that we are not offering
these constructive comments about the MUMPS Standard in a negative vein.
On the contrary, the University of California, Davis, is proud to have been
involved in the effort of standardization, and we are committed to continue

(3)

efforts to develop the language. We do feel, however, the iss-es which we
have raised must be faced at this time. One of the major reasons for
undergoing the time-consuming and difficult task of developing a standard
language was to enhance portability of MUMPS applications. Clearly, each
implementor is going to have to address some or all of the problems mentioned
in this paper. In most cases, the only solution permitted by the Standard
is use of the implementation specific commands, functions and special
variables. 1f each implementor does solve the problem in this manner,
there is a very real danger that we will end up having had little impact om
the existing situation. Instead, we will merely have created another dozen
or so MUMPS dialects, each masquerading as 'Standard MUMPS" and each equally
as non-portable as the dialects which existed prior to standardization.

ACKNOWY EDGEMENTS
This work was supported im part by NIH Contract PHS NO1-CL-4-2183.

REFERENCES

Ritchie, Denhis M. and Ken Thompson, ''The UNIX Time-Sharing System”,
Communications of the ACM, 17, 7, pp. 365-375, 1974.

Sias, F.R., Jr. and J.R. Covert, "A New Implementation of Standard MUMPS
in a Multi-Language Environment”, these proceedings, 1975.

(4)

