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Abstract

Recent years have seen the development of many new arproaches to decision-making in medical
consultation. These include both artificial intelligence (A.I.) methods and the introduction of
structural constraints in the context of more classical probabilistic models.

The major problems that arise in designing a consultation program imvolve choices of know-
ledge representations, diagnostic interpretation strategies, and treatment planning strategies.
The need to justify decisions and update the knowledge base in the light of new research findings
places a premium on the modularity of a representation and the ease with which its reasoning
procedures can be explained.

Most current A.I. consultation systems use either a semantic network (including special
cases such as causal or taxonomic nets) or a frame schema to represent descriptive knowledge of
disease processes and associated patient findings. The normative knowledge is usually expressed
as a system of decision rules attached to the semantic net nodes or as logical constraint con-
ditions attached to frames. Some major representational problems currently include: how to
choose the level of abstraction at which hypotheses are to be made explicit (different levels are
often needed for different diagnostic problems); how to maintain consistency between different
schemas of disease taxonomy; how to integrate temporal information into the logical rules that
describe diseases; and how to represent multiple competing points of view from different medical
experts as well as ''consensus knowledge."

In both diagnosis and treatment decisions, the relative advantages and disadvantages of
different schemes for quantifying the uncertainty of inferences raises difficult issues of a for-
mal logical nature, as well as many specific practical problems of system design. An important
insight that has resulted from the design of several artificial intelligence systems is that
robustness of performance in the presence of many uncertainty relationships can be achieved by
eliciting from the expert a segmentation of knowledge that will also provide a rich network of
deterministic relationships to interweave the space of hypotheses.

Artificial Intelligence Methods in Consultation

Several somewhat different A.I. methods have developed over the past several years. All of
them can be contrasted to previous methods by the greater complexity of medical knowledge that
they explicitly represent on the computer. They all have data structures that permit the express-
ion of semantic relationships between the facts in their knowledge bases that go beyond the simple
probabilistic or heuristic weights used as links by previous formal models. Yet they differ
widely among themselves in their scopes and their representations of medical knowledge.

The sequence of evolution of the earliest, and by now most developed A.I. consultation
systems is shown in Table 1, together with their institutional and project affiliations, and their
major characteristics in terms of representation of knowledge, strategies of reasoning, and
medical domain of application. Specific references to each of the systems are also listed. A
comparison of the first three systems in terms of their reasoning methods can be found in (10)
and (16). Since a detailed analysis and comparison is beyond the scope of the overview intended
in the present paper, only a few of the more distinguishing aspects of the programs and their
underlying methods are discussed. It is : tural to seek connections between the stated goals and

motivations of the system designers and the resulting choices of knowledge representation and

reasoning strategies.



TABLE 1
CHARACTERIZATION OF "FIRST PHASE" A.I. CONSULTATION SYSTEMS

Year of

Name of Medical Institution/Project Representation of Knowledge
First Prototype System Domain Descriptive Normative
of Application
1971 CASNET/Glaucoma Rutgers Univ./ Causal- Implicational
Rutgers Research Associational 1links among find-
Resource on Network ings, hypotheses,
Computers in Biomed. and treatments
1972 MYCIN/Infectious Stanford Univ./ Context tree Production
Diseases: SUMEX-AIM and proper- rules
(Bacteremias) ties of data
structures
1973 DIALOG Pittsburgh Univ./ Hierarchical Implicational
(renamed INTERNIST 1) Clinical Decision (taxonomic) links among find-
/Internal Medicine Laboratory network with  ings and hypo-
some causal theses
links
1974 PIP(Present Illness M.I.T.-Tufts Frames for Logical Con-
Program) diseases straints within
/Internal Medicine- [Long-term and between
/ (Renal Disease) memory frames
structure]
Reasoning Strategies
System Focusing Diagnostic Prognostic Treatment Explanation Ref.
Global assess- Elicitation of Follows path- Elicitation of major Listing of (11
ment over intermediate ways in the  treatment plans from patient- [2]
CASNET causal net and high Causal net diagnoses, modified specific [3]
level hypo- through global pre- causal path- [4]
theses ference score from ways and con-[5]
the findings. tribution of
evidence to
each hypo-
thesis.
MYCIN Guided by Goal directed backward chaining Listing of [6]
context thru production rules from high patient [7]
tree level to low level goals specific [8]
production [9]
rules and
their seqg-
uence of
application
Scoring
INTERNIST Partioning heuristics -—- --- - [10]
heuristic to combine [11]
weights from [12]
evidence to
hypotheses
& vice-versa
Heuristics Scoring
for activat-  heuristics [13]
PIP ing hypo- combine - --- - [14]
theses into weights from [15]

short-term
memory

logical con-
straints
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In order to build the knowledge base, or general model for a disease domain a program

for knowledge acquisition can be used. It will guide the user in the construction of data struct-

ures that encode knowledge in forms acceptable to the other programs. An alternative is to specify
a syntax for describing a consultative model, translate the expert's descriptions and rules into
the syntax in a file, and have a parsing program interpret this 'model file'.

The task of producing a patient-specific interpretation is that of the consultation
program proper. Its major components include: a data acquisition module or scheme for eliciting
patient data from the program user; a focusing component which will direct the reasoning of the
program at any time to concentrate on specific sub-areas of the knowledge base that are most relev-
ant to the interpretation of the client's findings (or other sub-goals of the system); an inferenc-
ing component that applies strategies and tactics from the knowledge base in the appropriate com-
binations and sequences for interpretation; a planning component that does likewise for producing
treatment recommendations; and an explanation component for providing explanations of the program's
reasoning to the user.

A separate question answering program may also be present in some systems to permit

the user to either query the knowledge base or obtain more detailed traces of the reasoning about
a specific case.
In all the A.I. systems, the interpretation of a specific patient's data can be viewed

as the generation of a patient-specific model, which is obtained by extracting from the knowledge

base the subsets of general descriptive knowledge and the normative rules that are most applicable
to the patient. This process of extraction is ultimately characterizable assome form of pattern
matching between the incoming specific patient data and the possible patterns of data that may be
expected under various hypotheses about the patient and the health care environment within which

the data is produced. The generation of these hypotheses can be carried out in response to the
formulation of a set of goals that the program ma-pursue in a top-down manner from higher level
goals (such as recommending a satisfactory treatment for the patient) to the lower goals (such as
finding a diagnosis, or elicting contraindications for the possible treatments)that enable the higher
level ones tobe finallysatisfied. When the goals and their structure are explicitely described within
the knowledge base it is possible to use simple strategies of inferencing and planning to produce
patient-specific interpretations. This is the case with the MYCIN system, which concentrates its
knowledge in the form of production rules that specify both general strategies and specific inter-
pretation tactics. The inferencing scheme is then a simple backward cleaning mechanism that seeks
to either prove (or extract directly from patient data) the preconditions (antecedents) that will

satisfy the consequents of a rule that results in the completion of successively higher level goals.
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There is relatively little flexibility in the focusing scheme of MYCIN: it is guided by a context
tree that is pre-specified for the program. MYCIN does not have an explicit general descriptive
model of disease mechanisms; though the level of abstraction at which hypotheses can be related is
implicitly constrained by the choice of properties defined for each of the data structures in the
knowledge base. One of the major characteristics of MYCIN is the emphasis placed on a separate

question-answering program in addition to the explanation program that permits a careful tracing

of the reasoning taking place in the consultation session. The simplicity of the backward chaining
strategy is particularly valuable in facilitating such tracings.

In contrast, the CASNET, or causal associational network model, is deliberately desig-
ned to represent a generalized description of disease processes as they evolve over time. The
causal relations express the mechanisms of a disease and their modifications under various regimens
of treatment. Different patterns over the causal network are associated with the various elements
in a classification scheme of diagnostic hypotheses, that can include degrees of severity and pro-
gression of a disease. Appropriate treatment plans can be associated with the diagnostic hypothe-
ses, and specific treatment within the plans related to ecach other by constraints of how they cover
for particular illnesses, how they may interact, etc. Normative knowledge is in the form of
implicational rules that link intermediate hypotheses about pathophysiological states to patient
findings,with similar rules for treatment planning.

The price paid for this greater explicitness of structural description is an increase
in the complexity of specialized strategies in the inferencing and planning components of the con-
sultation program. This is valuable when it helps to strengthen the chains of inference, which can
happen in domains, such as glaucoma, where mechanisms of disease are reasonably well understood,
and where their understanding is important in the planning of treatment. There are many situations
in medicine where mechanisms are only poorly understood, if at all, and treatment is almost entirely
empirical in nature. In such domains, causal relations will be sparse, and the mjor conceptual
constructs remaining will be taxonomies of diseases based on anatomical locus (i.e. liver disea~
ses), or a common systemic relationship (i.ec. hematological diseases). Such relations can also
be described in the CASNET formalism. From the point of view of strategies, there are distinct
ways in which the explicit CASNET model can be used to guide focusing and perform inferences.
Taking advantage of the partial ordering implicit in causal networks, the CASNET model can be pre-
compiled, which permits rapid calculation of the propagation of confidence weights over the entire
network (a global assessment) every time a new piece of evidence about a patient is given to the
program. Unlike MYCIN, there is no explicit statementof strategies in the normative knowledge base
- they are implemented in the consultation program itself which applies them selectively to the

appropriate elements from the knowledge base. In general, inference strategies can be characterized
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as propagating confidences from findings to lower level hypotheses, which in turn propagate to
higher level hypotheses. This is often referred to as bottom-up processing in artificial intell-
igence as opposed to the goal-oriented top-down reasoning of MYCIN. CASNET only places minor
emphasis on focusing because its global assessment strategy obviates the need for it in restricted
medical domains. Several elements of hypothesis-directed (top-down) reasoning enter into the
selection of findings and the elicitation of treatment plans from the diagnoses.

A system that explicitly relies for its reasoning strategies on a hierarchial network of
disease hypotheses is INTERNIST-I, which performs diagnostic comsultation in a CPC mode over the
field of internal medicine. INTERNIST-I is now reported to cover 80% of the diagnostic knowledge
in internal medicine. It places strong emphasis on a focusing heuristic to narrow down the scope
of hypotheses, that must be considered in the patient-specific-model from among the large number
of possible diseases in internal medicine. This heuristic partitions the possible hypotheses into
those that cover the subset of the patient's data that is being focused on. Various scoring
methods are used to build up confidence in the different diagnostic hypotheses (using weights from
both findings-to hypotheses and from hypotheses-to-findings), and once only a few are left in con-
tention a discriminatory strategy is applied to arrive at a differential diagnosis.

The PIP system also has a strong descriptive component, characterizing diseases by the
frame formalism of Minsky. In building a patient-specific-model, the consultation system has foc-
using heuristics that bring frames out of the knowledge base (also called long-term memory) and
put into an "active' or 'semi-active" status. These conditions enable various reasoning strategies
to take advantage of the normative rules that are attached to the frames, and through a scoring
algorithm, arrive at a ranking of diagnostic hypotheses. A major motivation of the PIP project
was to develop a better understanding of clinical cognitive processes, and to this effect a
protocol analysis was carried out. In the spectrum of complexity of structure, the PIP
formalism is potentially the most complex. With it comes the attendant difficulties of specifying
strategies that will take advantage of all the descriptive relations in the knowledge base.
INTERNIST has as its goal the incorporation of the rules of interpretation and some descriptive
knowledge structures of a single expert diagnostician. CASNET/Glaucoma provides a formalism where
certain elements of the model (such as the causal network) may represent a consensus about disease
mechanismsreached by a group of expert investigator clinicians. The rules of interpretation and
treatment planning may, however, reflect several different viewpoints, which can be presented
as alternatives. Both CASNET and INTERNIST have descriptive structures of an intermediate level
of complexity with well-proven strategies that have allowed the programs to give expert-level
advice in many complex cases. CASNET/Glaucoma has been demonstrated and tested against a panel
of experts at the National Academy of Ophthalmology and Otolaryngology, with very satisfactory

results (17) and INTERNIST-1 routinely handles the CPC cases from the New England Journal of Medicine.

<5>



MYCIN, which has the least descriptive structure, has also achieved performance that is comparable
to that of a group of experts in infectious diseases (18). Thus, the first generation of A.I.
consultation systems has shown the feasibility of obtaining both high performance and many elements
of understanding (through the structured knowledge bases) in clinical consultation.

New A.I. Consultation Systems:

Recent developments have tended to generalize the methods and representations that were
generated during the first phase of system investigation and development. The production rule for-
malisms of MYCIN have been studied (9) and generalized (19). The CASNET approach has also been
generalized by replacing a strictly causal net by a partially ordered network description for
diseases in the EXPERT system (20). There have been new strategies of focusing implemented in the
INTERNIST-IT program (12).

There has also been a movement to study knowledge acquistion and updating processes in
greater detail and link consultation systems to data bases (21,22). Attempts at extracting general,
simple,and streamlined modules from existing systems to be used as tools in structuring knowledge

is the main theme of the emerging field known as knowledge engineering (23). The first develop-

ment in these new directions are promising, since they show that many of the existing comepts
and tools may indeed find application in a large variety of clinical problem-solving situations

and medical domains.
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