R A
(2001. 3.

An Information Space Architecture:

Topica Framework

Yuzuru Tanaka, and Jun Fujima

Meme Media Laboratory, Hokkaido University, Sapporo, 060-8628 Japan

tanaka@meme.hokudai.ac.ip, fujima@meme.hokudai.ac.ip

Abstract. With the growing need for interdisciplinary
and international availability, distribution and exchange
of intellectual assets including information, knowledge,
ideas, pieces of work, and tools in re-editable and
redistributable organic forms, we need new media
technologies that externalize scientific, technological,
and/or cultural knowledge fragments in an organic way,
and promote their advanced use, international distribution,
reuse, and re-editing. These media may be called meme
media since they carry what R. Dawkins called “memes”.
An accumulation of memes in a society forms a meme
pool that functions like a gene pool. Meme pools will
bring about rapid accumulations of memes, and require
new technologies for the management and retrieval of
memes. This paper reviews our R&D on meme media,
meme pools, and proposes a new framework called
‘Topica’ for organizing and accessing the huge
accumulation of intellectual resources in our societies.

1. Introduction

If we look back over the last three decades of
computer systems, we can summarize them as
follows. In the 1970s, we focused on the
integrated management of enterprise or
organization information, and developed database
technologies. In the 1980s, we focused on providing
an integrated environment for personal information
processing and office information processing, based
on the rapid development of personal computers
and workstations that began in the late 1970s. The
object-orientation paradigm played an essential role
in developing graphical user interface and unified
treatment of data, texts, figures, images movies, and
programs. In the 1990s, we focused on the
publication and browsing of intellectual assets,
based on the rapid development of WWW and
browser technologies.

One of the possible scenarios for the coming
decade may be the further growing need for
interdisciplinary and international availability,
distribution and exchange of intellectual assets
including information, knowledge, ideas, pieces of
work, and tools in re-editable and redistributable
organic forms. We need new media technologies

that externalize scientific, technological, and/or
cultural knowledge fragments in an organic way,
and promote their advanced use, international
distribution, reuse, and re-editing.

These media can carry a variety of intellectual
assets. A media object denotes such a medium with
some intellectual asset as its contents. Such media
objects can replicate themselves, recombine
themselves, and be naturally selected by people
reusing them. We call them ’meme media’ since
they carry what Richard Dawkins called ‘memes’. In
his book, “The Selfish Gene” [1], Dawkins
suggested provocatively that ideas (he called them
memes) are like genes and that societies have meme
pools in just the same way as they have gene pools.
Whereas genes exist in a physical environment,
‘memes’ exist within a society. A fundamental and
necessary framework for the growth and
distribution of 'memes’ is a 'meme pool'. A 'meme
pool' is an accumulation of ‘memes’ in a society and
functions like a gene pool. 'Meme media', together
with a 'meme pool', provide a framework for the
farming of knowledge. When economic activities
are introduced, a 'meme pool' becomes a 'meme
market' where providers and distributors of 'memes’
should be able to carry out their business without
prohibiting the replication, re-editing and
redistribution of 'memes' by users.

Based on these predictions, we have been
conducting rescarch and development on 'meme
media' and 'meme market' architectures since 1987.
We developed 2D and 3D meme media
architectures 'IntelligentPad’ and 'IntelligentBox'
respectively in 1989 and in 1995 [2~7], and have
been working on their meme-pool and
meme-market architectures [8, 9], as well as on
their applications. IntelligentPad represents each
object as a pad, i.e., a card-like visual object that
you can directly manipulate on the display screen
(Figure 1), whereas IntelligentBox represents each
object as a box, i.e., a 3D visual polyhedron object
with direct manipulability (Figure 2). Both of them
allow us to directly combine different objects on the
screen to compose objects. In the
IntelligentPad architecture, you can paste a pad on

new

1 7 39-6

23)

another pad, whereas, in the IntelligentBox, you can
embed a box in the local coordinate system defined
by another box. In each of these cases, the former
object becomes a child of the latter. Each of pads
and boxes exports its functional linkage capability
as a list of slots. When you combine an object with
another, you can functionally connect the child
object with one of the slots defined by the parent.
Figure 2 shows a car composed of primitive boxes.
When a user rotates its steering wheel, the steering
shaft also rotates, and the rack-and-pinion converts
the rotation to a linear motion. The cranks convert

this linear motion to the steering of the front wheels.

This composition no additional

programming.

requires

(a) primitive pads (b) a composite pad
Fig. 1 An example pad composition.

o
/

(a) primitive boxes. (b) a composite box.
Fig. 2 An example box composition.

Based on these meme media architectures, our
group and our collaborators from academia and
industry have developed a large variety of
applications. Some of them include PIM (Personal
Information Management) systems, CAI systems,
multimedia KIOSK systems, GISs (Geographical
Information ~ Systems), digital archive and
interactive access of Kyoto cultural heritage,
international exchange and distribution of nuclear
reaction data and their analysis tools, interactive
visualization of a ¢cDNA database, and interactive
visualization and simulation of electromagnetic
fields caused by cellular phones of different shapes.

The meme media and meme pool architectures
will bring about a rapid accumulation of memes in
our societies, which will require a new way of
organizing and accessing them. No conventional
information organization method, such as
table-based, hierarchical, or indexed, is suitable for
organizing and allowing access to a huge number of
heterogeneous intellectual assets. The situation here
is similar to the management and access of
commodities in our societies. While commodities of
the same type can be managed by a single database,
there are so many different types that consumers

cannot tell either which commodity belongs to
which type, or which database manages which type.
To solve this problem, we used to use documents or
spaces to arrange information about mutually
related commodities. Examples include catalogs,
stores, department stores, malls, and towns. Here
we propose a new framework for organizing and
accessing intellectual assets. This framework uses
documents to contextually and/or spatially select
and arrange mutually related assets. Examples of
such documents may include figures, images,
movies, maps, and any combinations of them.
These documents, as well as their component assets,
arc all represented as meme media objects.
Therefore, these documents, together with related
assets, may also be arranged in other documents,
which forms a complex web of such documents.

2. Intellectual Assets on Meme Media

IntelligentPad and IntelligentBox have versatile
application fields. They have a capability of
covering all kinds of client applications using 2D
and 3D graphical representations. Each application
may require the development of new primitive pads
or boxes. Figure 3 shows PIM tools developed as
composite pads, while Figure 4 shows a GIS using
IntelligentPad and a legacy GIS database engine.
Nigel Waters, a professor in the Department of
Geography at the University of Calgary, proposed a
GIS application of IntelligentPad [10] in which a
map display, a traffic simulation model, a video
image of an intersection, and a display in graph
form are all represented as mutually interacting
pads. Such a GIS is not only a great pedagogical
device, but is also invaluable for planning.

Fig. 3 PIM (Personal Information Management)
tools developed as composite pads.

e

Fig.4 a GIS (Geographical Information System)
using IntelligentPad and a legacy GIS
database engine.

Seigo Matsuoka of Editorial Engineering
Laboratory (EEL) Inc. applied IntelligentPad to the

production of ‘The Miyako’, a digital archive
system for Kyoto cultural heritage (Figure 5). It
stores all the multimedia contents in a relational
DBMS, and uses IntelligentPad for its front-end
interface to provide full interactivity so that users
can navigate through the huge contents library
using various types of association search based on
Japanese culture.

Fig. 5 A digital archive system ‘The Miyako’
using IntelligentPad.

As to IntelligentBox, we have developed two
important generic application frameworks; one for
interactive database visualization and the other for
interactive scientific visualization. We have been
collaborating with Takashi Gojobori’s group at
National Institute of Genetics to develop an
interactive animation interface to access cDNA
database for the cleavage of a sea squirt egg from a
single cell to 64 cells (Figure 6). The cDNA
database stores, for each cell and for each gene, the
expression intensity of this gene in this cell. Our
system animates the cell division process from a
single cell to 64 cells. When you click an arbitrary
cell, the system shows the expression intensity of
each of a set of genes specified in advance, as
shown in the left lower part of this figure. You may
also arbitrarily pick up three different genes to
observe their expression intensities in each cell. The
expression intensities of these genes are associated
with the intensities of RGB color components to
highlight each cell in the cleavage animation.
Keeping this highlighting function active, you can
advance or step back the cell-division animation.
The ¢cDNA database is stored in an Oracle DBMS,
which IntelligentBox accesses using Java JDBC.

Fig. 6 An IntelligentBox application to a
‘biosimulator’ accessing cDNA database

For interactive scientific visualization,
IntelligentBox provides a generic linkage
mechanism with the AVS system. This allows us to
define a box as a program module of AVS, so that
combination of such boxes defines a composition of
an AVS program, and the manipulation of such a

box changes parameter values of its corresponding
AVS program module. These allow us to define a
virtual laboratory in which we can construct a
scientific simulation world through direct
manipulation of previously constructed components,
directly manipulate objects in this world to change
situations, and interactively observe the simulation
result in this world. Figure 7 shows a virtual
laboratory for experimenting with the antenna of a
cellular phone. Users can directly change the
location and the length of the antenna to observe the
changes of the radiation pattern, the electric field,
and the surface current on the phone body. The
system uses NEC2 as a numerical computation
solver, which is invoked through AVS.

Fig. 7 Virtual Lab Ssm using IntelligentBox
technologies.

All these application pads and boxes are
decomposable. Users can reuse some of their
components, or customize them by replacing some
components with others or adding new ones.

3. Meme Pool
Architectures

and Meme Market

In order to make pads and boxes work as memes
in our societies, we need a worldwide publication
repository that works as a meme pool. The Piazza
architecture allows us to define such repositories of
pads over the Internet (Figure 8). Each repository is
called a pizza. You can drag-and-drop pads between
any piazza and your own local environment. You
can easily define and open your piazza over the
Internet, and register its entry-gate pad to any other
public piazza. People accessing the latter pizza can
access your new plazza by double-clicking this
entry-gate pad. Users of web browsers have to ask
web page owners by sending, say, an e-mail for
including his or her information in another’s web
page, or for spanning links from another’s web page
to his or her page. This is similar to the situation
between tenants and owners. The Piazza
architecture, on the other hand, provides a large
public marketplace for people to freely open their
own stores or galleries of pads.

The Piazza architecture consists of a Piazza
server and a Piazza browser. A Piazza browser is
represented as a pad, and supports browsing among
different ‘piazzas’. Each piazza is associated with a

file managed by a remote Piazza server. Pads can be
drag-and-dropped to and from the currently
accessed piazza, to upload and download pads to
and from the associated remote server file. When a
piazza is opened within a Piazza browser, all the
pads registered at the associated server file are
immediately downloaded onto this piazza and
become available. An entrance link to a piazza is
also represented as a pad, and can be put on another
piazza to define a link. Users are welcome to install
their own Piazza servers anywhere, anytime, and to
publish their piazzas. Piazza enables end users to
open their own gallery of pads on the Internet, or to
exhibit their pads in some other private or public
space. Such pad galleries work as flea markets,
shops, shopping centers, community message
boards, community halls, or plazas.

Fig. 8 A piazza with registered pads (top), and
a piazza editor to define a new piazza
(bottom).

4. Topica for Organizing and Accessing

Intellectual Assets

4.1 Organization and access of intellectual

assets

All the example composite pads and boxes in
preceding chapters are subject to international
distribution, exchange, and reuse. These data and
tools, as well as their documents in pad or box
forms, serve as intellectual assets in our societies.
The meme media and meme pool architectures will
rapidly increase their variety, and form their huge
accumulation.

Now we consider how to manage and access a
huge accumulation of intellectual assets represented
as pads or boxes. Here we consider only pads, but
our conclusions are also applicable to boxes. Let us
first consider if databases can manage pads. If the
platform has the pad definition code and all the
necessary DLLs, the storage of a composite pad
only needs to store its exchange format
representation; no other information needs to be
stored. The exchange format representation of a
composite pad includes two kinds of information.
One is the form information that describes what

kinds and sizes of component pads are used, how
they are geometrically pasted, and which slot is
used in each connection between component pads.
The other is the state information of this pad. The
state information needs to be sufficient to specify
the current values of all of its internal variables
whose values are not specified by its form
information. Composite pads with the same form
information but with different states are said to
share the same form. Without loss of generality, we
can assume that the state information has a record
type, le., it can be represented as a list of
attribute-value pairs for the ordered attribute set that
is determined by each form.

If we only have to manage a large number of
pads of a few different forms, we can keep the form
information outside the databases; we only need to
store the state information of pads in the databases.
Such a database is called a form base. If the state
information of a record type has only atomic and
simple values for its attributes, we can use a
relational database system to store these pads. If
some attributes allow variable length data,
continuous data such as movies and sounds, or
complex data such as compound documents and
other relations, we can use an extended relational
database system or a structural OODB system. In
this case, we can even deal with a composite pad
storing other composite pads in some of its state
attributes.

Pads representing various intellectual assets
accumulated in our societies, however, have a large
number of different forms. While we may store a
group of pads of the same form in a single database
relation, we have to manage a huge number of
different relations together with the same number of
different forms.

The situation here is similar to the management
and access of commodities in our societies.
Different from standardized prefabricated parts that
are usually managed by databases, commodities in
our societies have a huge variety and no common
attributes to describe them, which makes it difficult
to manage them with databases. While commodities
of the same type can be managed by a single
database, there are so many different types that
consumers cannot tell either which commodity
belongs to which type, or which database manages
which type. Types are usually defined by producers,
and not always directly related to functions, uses, or
appearances that consumers can identify. To solve
this problem, we typically use documents or spaces
to arrange information about mutually related
commodities for ease of access. Examples of such
documents are catalogs published by producers or
independent publishers, advertising brochures from
producers or stores, books, periodicals, and

newspaper articles referring to commodities.
Catalogs adopt various different criteria in the
selection and arrangement of commodities. Books,
periodicals, and newspapers may refer to each other.
Examples of commodity-organizing spaces include
shops, department stores, malls, and towns. The
first three use consciously planned selections and
arrangements, while the selections and
arrangements in towns evolve emergently. Shops
are nested in malls and department stores, which are
again nested in towns.

Let us consider one more example. “The Trinity’
is one of the most popular themes of Christian
paintings. Each painting with this theme includes
the images of the Father, the Son, and the Holy
Spirit. Suppose you have a collection of these three
images extracted from a large number of paintings
on the Trinity. Our question here is where to store
this collection so that we or even other people can
access this collection in a future. You may think that
we can define a relation in a database to store this
collection. This relation has three attributes, the
Father, the Son, and the Holy Spirit. Each tuple is a
triple of file pointers, pointing to three images
extracted from the same painting. This solution,
however, does not tell where to memorize the fact
that this newly created relation represents the
collection of three images from a large number of
paintings on the Trinity. We have to deal with a
huge number of different concepts as well as
relations among them. ‘The trinity’ is only one of
them. A potential solution in this example may be to
store this collection in association with the article
on the Trinity in some encyclopedia.

4.2 Topica Framework

Based of the above observations, here we
propose a new framework for the organization of
and access to intellectual assets represented as pads.
This framework uses documents to contextually
and/or spatially select and arrange mutually related
intellectual assets. Such documents may be texts,
images, figures, movies, maps, or compound
documents consisting of various multimedia
components. These documents as well as these
intellectual assets are all represented as pads.
Therefore, these documents may be also arranged
together with related assets on other documents.

We call this framework ‘Topica’, named after
Aristotle’s Topica. In the Topica framework,
documents to arrange assets are called topica
documents. Each topica document is a pad that
displays a document and stores relations among
some other topica documents and/or some pads.
Such a document is represented by an XHTML text,

with some slot definitions. Relations in a topica
document are called ‘topica tables’, and may be
defined by tables, or by queries that may access
local or remote databases, XHTML texts defining
other topica documents, or relations defined in
other topica documents. A topica document has
some areas through which users can store and
retrieve other topica documents, pads, or character
strings; we call these areas on a topica document
‘topoi’. Each topos is basically associated with an
attribute of the topica tables stored in the topica
document. Each attribute within a topica table may
take as its value a character string, an exchange
format representation of a pad, or a URI identifying
a topica document or a pad stored in a local or
remote file.

A topos of a topica document is either a
geometrically specified area of this document or a
tagged text string in the XHTML document that is
viewed by this topica document. Figure 9 shows an
XHTML document on ‘the Trinity’ in Christianity,
where a special kind of tag is used to specify that
the three phrases ‘the Father’, ‘the Son’ and ‘the
Holy Spirit’ in this article, together with the title
‘“Trinity, The’, work as four topoi of this topica
document, which stores a relation among the
images of the three depicted within each of a
number of paintings of the Trinity. Instead of
directly storing images, the relation stores URIs of
these image files.

<?xml version="1.0"7>
<html
xmins="http://www.w3.org/..."
xmlns:topica="..." >
<head>
<title>Trinity</title>
<topica:table>
<tuple>
<father>file://C:/pub/trinity/father].jpg</father>
<son>file://C:/pub/trinity/sonl jpg</son>
<spirit>file://C:/pub/trinity/spiritl jpg</spirit>
</tuple>

</topica:table>
</head>
<body>
<hl><topica:topos name="trinity"
ref="//tuple/trinity/text()">Trinity</topica:topos>,
The</h1>
<p> The central ... in Three Persons,
<topica:topos name="father" ref="//tuple/father/text()">
the Father</topica:topos>,
<topica:topos name="son" ref="//tuple/son/text()">
the Son</topica:topos>, and
<topica:topos name="spirit" ref="//tuple/spirit/text()">
the Holy Spirit</topica:toposs. ..
</p>
</body>
</htmi>
Fig. 9 An XHTML definition of a topica

document on the Trinity.

We can use a topica viewer pad to view the
corresponding topica document as a pad. The topica
viewer pad is basically the Microsoft Internet
Explorer (IE) wrapped by a pad wrapper. It has
extended IE to perform topoi functions. Topica
documents may also provide some stots, which can
be easily defined by using special tags in their
XHTML definitions.

Figure 10 shows the topica document of the
XTML definition in Figure 9, a selector popped up
by double-clicking the ‘Father’ topos, and the
selection of one candidate within this selector,
popping up the corresponding image. This selection
automatically influences the information available
through other topoi; the clicking of ‘son’ topos now
pops up a selector showing only one candidate. All
these images also work as topica documents. Each
image of a whole Trinity painting includes three
topoi respectively covering the Father, the Son, and
the Holy Spirit, and a topica table that refers to the
topica table in the original Trinity article.

Trinity, The

Fig.10 A topica decument on the Trinity defined
by the XHTML text in Fig. 9.

Topoi are different from Xlinks [11] in the
following two respects: Topoi on the same topica
document are related with each other by the topica
table stored in this topica document. Secondary, you
may drag-and-drop new topica documents into
some topoi to update the topica table.

4.3 The application horizon of the topica

framework

Figure 11 shows the management of invitation
letters using a topica document. Invitation letters
from the same person for the same category of
purposes may share the same letter template, which
he or she can reuse repeatedly to generate such
letters by filling in the blanks. This topica document,
on one hand, works as such template; underlined
italicized strings may be rewritten for different
letters. The same topica document, on the other
hand, works to store and manage all the letters
created using this template; the underlined italicized
strings work as topoi. When clicked, each topos
pops up a selector showing all the candidate strings

filling in this placeholder; a selection of one of
them replaces the current string, and rewrites the
letter. This topica document has another topos to
store resumés sent from invitees; an instantiation to
some specific invitation letter also instantiates this
topos to pop up the resumé of the selected invitee.
This resumé also works as a topica document with
some topoi. When you send invitation letters, you
may also send the template for a resumé.

Fig. 11 A topica document for the management
of invitation letters together with invitees’
resume.

Suppose you have presented talks at many
conferences in the past. For each conference, you
have files of the call-for-paper mail, the submitted
paper manuscript, the letter of acceptance with
reviewers’ comments, the camera-ready manuscript,
the conference program, and the Power Point
presentation. With our conventional file directory
system, you have two alternative ways to store
these files. You may either define an independent
folder for each conference, or define six different
folders for six different file categories. In the first
case, you cannot scan through all the files of the
same category. In the second case, you cannot jump
from one file to another of a different file category,
but of the same conference. The topica document in
Figure 12 solves this problem. Each folder in this
directory corresponds to one of the six file
categories, and works as a topos. Its double-click
pops up a selector that looks like another file
directory listing all the files of this category. A
selection of one file in this selector determines the
corresponding conference, and restricts every other
topos to show only one file of the same conference.

Conference Files

call-for-paper subraitted
mail paper

2dy

‘manuseript

: i
Fig. 12 A topica document that works as a file
directory with 6 categories of files.

Each topica document may play three different
roles. First, it works as it is. Second, it may work as
a template in such a way as shown in the
invitation-letter example. Third, it works as a
schema of the stored topica table; you may use a
topica document to specify a query to the topica
table. The last role will be detailed in the following.
To distinguish these three different roles of the
same topica document, we have introduced three
modes for each topica document; they are the
document mode, the template mode, and the
schema mode. You can change the mode of a topica
document by popping up the right button menu of
this document. Unless otherwise specified, each
topica document is in its document mode.

If we restrict every topica document to store a
single relation with a single tuple, then each topos
works as an anchor to another topica document. In
this way one could replicate the standard linking
behavior of a WWW page. However, topoi can
provide the additional behavior of allowing update
of their underlying values by users other than the
topica document owner. Update of topica document
relations through direct manipulation operations
will be reported elsewhere.

4.4 Queries over the web of topica

documents

The Topica framework provides a unified
approach for organizing and accessing local and/or
remote files, databases, conventional web
documents including search engines and portal sites,
and topica documents over the Internet. In addition,
the framework allows us to describe queries in
XML-QL that, by navigating through these different
types of information, quantifying properties of
some documents on the navigation path, and
picking up selected assets on the way, can construct
the XHTML documents and relations of new topica
documents. Figure 13 shows an example XML-QL
query.

This query accesses a topica document identified
by the variable $myReferenceBook whose value is
specified elsewhere, and retrieves all the books
from its topos named ‘encyclopedia’. Then it
selects ‘Christianity’ for the ‘topics’ topos defined
on each title page of these books (ie.,
encyclopedias) to retrieve all the articles on
Christianity from each of these books. Then it
searches these articles for those with “Trinity’ as its
header, and retrieves all the images of ‘the Father’
from each of these article topica documents. Finally,
it generates a new topica document storing the
collection of these retricved images in its ‘image’
topos.

CONSTRUCT
<topicaDocument>
<style ref="http://ca.meme.hokudai.ac.jp/scrapbook.xsl"/>
<contents>
This is a collection of <topos name="father"
ref="//image/text("> the Father images</topos>
in the paintings of Trinity.
</>
<topicaTable> {
WHERE
<topicaTable> <tuple>
<encyclopedia>$encyclopedia</>
</></> IN $myReferenceBook,
<topicaTable><tuple>
<topics>Christianity</>
<articles>$articles</>
</></> IN $encyclopedia,
<html>
<head><title>Trinity</></>
<body>
<topicaTable><tuple><father>$father
<S><f></>
</>
</> IN $articles
CONSTRUCT
<tuple><image>$father</></>
} <>
</>
Fig. 13 An example XHTML to create a new
topica document by navigating through
existing ones.

The XML-QL description above, however, has a
serious problem. Is it reasonable to assume that the
user knows all the topica tag names necessary to
specify this query? Obviously the answer is ‘No’.
However, he or she can navigate through topica
documents along a single path consistent with this
query. Figure 14 shows a history of such a
navigation starting from a file directory
‘myReferenceBook’, and ending with an article on
“Trinity, The’.

Fig. 14 A single path navigation that is consistent
with the query in Fig.13,

By changing these topica documents to the
schema mode, you can specify a query as shown in
Figure 15. This visual query specification basically
exploits the QBE (Query-By-Example) convention.
Every underlined topos value works as a variable,
which may specify either a text string or a topica

document. You may specify these variables either
on a topica ocument in its schema mode or on a
topos selector window. In it schema mode, every
topica document has one additional topos at the top
left corner, which is used to specify the URIs of
topica documents sharing the same schema with
this topica document. This query searches for all the
possible navigation paths starting from the directory
‘myReferenceBook’, and ending with an article
including the string ‘Trinity’ in its header. The
query also specifies an output topica document with
the phrase ‘the Father images’ specified as a topos,
and equates this topos with ‘the Father’ topos of the
‘Trinity, The’ topica document by using the same
variable for these topoi. All the topica documents in
the condition part of this query should be

interpreted as schemas, while the one in the output
part defines a template. The query in Figure 15
specifies the same query as the XML-QL query in
Figure 13.

Fig.15 Visual specification of the same query
specified in Fig.13.

The visual query specification using topica
documents in their schema mode assumes that
topica documents of the same category, or on the
same topics use the same topica tag names in their
definitions. Such convention of using the same tag
names spreads among people either through
standardization efforts, or through the extensive
replication and distribution of the same topica
document among people to reuse its contents, style
and/or schema in their production of new topica
documents. Topica documents as templates and/or
schemas will also become intellectual properties,
and provide new business opportunities.

5. Concluding Remarks

Meme media and meme market system
architectures work as the enabling technologies for
interdisciplinary and international availability,
distribution and exchange of intellectual assets

including information, knowledge, ideas, pieces of
work, and tools in re-editable and redistributable
organic forms. Pads and boxes as meme media
objects allow us to re-edit and internationally
redistribute a huge variety of tools and documents
including CAI tools, interactive animation objects,
PIM tools, GIS tools, digital archives and their
access tools, database visualization tools, virtual lab.
tools, meme-pool organization and access tools, and
topica sheet documents. Meme media and meme
market system architectures will significantly
accelerate the evolution of memes in our societies,
which will lead to a need for new ways of
organizing and accessing their huge accumulation.
The Topica framework provides a unified
framework for organizing and accessing local
and/or remote files, databases, conventional web
documents, and topica documents over the Internet.
It uses documents to contextually and/or spatially
select and arrange mutually related intellectual
assets distributed over the Internet.

References

[1] R. Dawkins. The Selfish Gene. Oxford Univ. Press,
Oxford, 1976.

[2} Y. Tanaka, and T. Imataki. IntelligentPad: A
Hypermedia System allowing Functional Composition of
Active Media Objects through Direct Manipulations. In
Proc. of IFIP’89, pp.541-546, 1989.

[3] Y. Tanaka, A. Nagasaki, M. Akaishi, and T. Noguchi.
Synthetic media architecture for an object-oriented open
platform. In Personal Computers and Intelligent Systems,
Information Processing 92, Vol I, North Holland,
pp.104-110, 1992.

{4] Y. Tanaka. From augmentation media to meme media:
IntelligentPad and the world-wide repository of pads. In
Information Modelling and Knowledge Bases, VI (ed. H.
Kangassalo et al.), [OS Press, pp.91-107, 1995.

[5] Y. Tanaka. A meme media architecture for fine-grain
component software. In Object Technologies for
Advanced Software, (ed. K. Futatsugi, S. Matsuoka),
Springer, pp.190-214, 1996.

[6] B. Johnstone. DIY Software. New Scientist. Vol.147,
No.1991:26-31, 1995.

{71 Y. Okada and Y. Tanaka. IntelligentBox:a constructive
visual software development system for interactive 3D
graphic applications. Proc. of the Computer Amimation
1995 Conference, pp.114-125, 1995.

[8]Y. Tanaka. Meme media and a world-wide meme pool.
In Proc. ACM Multimedia 96, , pp.175-186, 1996.

[9] Y. Tanaka. Memes: New Knowledge Media for
Intellectual resources. Modern Simulation and Training, 1,
pp.22-25, 2000.

[10] N. Waters. POGS: Pads of Geographic Software.
GIS World, 8(11): 82, 1995.

[11] htep://www.w3.org/TR/xlink/

