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Abstract. We extracted disease-gene relations from MedLine using disease/gene dictionaries
which are constructed from six public DBs. Since dictionary matching produces a large number
of false positives, we developed a method of machine learning-based named entity recognition
(NER) to filter out false recognitions of disease/gene names.
We found that the performance of relation extraction depends on the performance of NER filtering
and that the filtering improves the precision of relation extraction by 26.7% at the cost of a small
reduction in recall.

1 Introduction

Our aim is to extract diseases and their relevant genes from MedLine abstracts, which we term
relation extraction. There are some existing systems for relation extraction from biomedical litera-
ture. ArrowSmith [1] and BITOLA [2] extract relations between diseases and genes using background
knowledge about the chromosomal location of the starting disease as well as the chromosomal location
of the candidate genes from resources such as LocusLink, HUGO and OMIM. G2D [3] also extracts
relations by relative score, which is calculated by co-occurrence information. An appealing feature of
these three systems is that all outputs of these systems are terms used in publicly available biomedical
data sources, which means these outputs are linked to such databases and can be used by other re-
searchers. However, these approaches have some problems: Their results could conceivably contain a lot
of false positives because they yield too many relations that are dependent only on the co-occurrence
information; so many of their results may be unreliable.

There are some studies that employ various NLP techniques in order to obtain high-precision.
Proux [4] extracted gene-gene interactions using a part-of-speech (POS) tagger, domain-specific cor-
pora, and a shallow parsing technique. Experimental results show 81% precision and 44% recall. Puste-
jovsky [5] also used predicate patterns which were built by training from a manually-constructed training
corpus. Then they analyzed the subject and the object relation for a main verb to extract them as the
arguments for a relation. In this approach, they attempted to recognize entity names by shallow pars-
ing and identify semantic type using a domain ontology, and they dealt with acronym problems and
anaphora resolution. Experimental results show 90% precision and 59% recall. The advantages of these
approaches are that they considered various contextual features using NLP techniques. However, these
approaches have a problem in terms of extracting practical and reusable biological knowledge. The
outputs only provide information about relations among the “terms” appearing in text. In other words,
the entities in the outputs are not explicitly linked to entities in biological databases. If the outputs
provide links to explicit knowledge models, then the utility of these outputs will be increased for other
researchers.

In this paper, we extract relations by named entity recognition that consists of two steps. The
first step uses a dictionary-based longest matching technique. We create dictionaries constructed from
public biomedical databases, which enables us to explicitly link extracted relations with the entries in
such databases. Since dictionary-based matching produces many false positives, we filter them out by
machine learning in the second step.
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Fig. 1. The system architecture

2 Relation Extraction using Dictionaries and Machine Learning

Figure 1 shows the architecture of our system. Our system first collects sentences that contain at least
one pair of disease and gene names, using the dictionary-based longest matching technique. The system
then attempts to extract a binary relation between the disease and gene names in each sentence 1.

In this work, we use machine learning to filter out false positives from the dictionary-based longest
matching results.

We have three types of false positives in the dictionary-based results:

– False gene names
– False disease names
– False relations

There are some existing studies in natural language processing aimed at filtering out the first two
types of false positives. Tsuruoka and Tsujii [6] proposed a dictionary-based longest matching approach
for protein name recognition where they employed a Naive-Bayes classifier to filter out false positives.
However, since their dictionary was constructed from the training corpus, their experimental setting
is different from the real situation where we have a dictionary constructed from biomedical databases.
Furthermore, they used only local context as the features for filtering.

1 When a sentence contains more than one disease or one gene, the system makes copies of the sentence
according to the number of disease-gene pairs. We call each of these copies co− occurrence, and regard these
items as the input unit of our system. For example, if there are two gene names and one disease name in a
sentence, then our system makes two co-occurrences for this sentence.
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Fig. 2. Example of annotated co-occurrences

2.1 Construction of the Gene and Disease Dictionaries

In order for each output entry to be linked to publicly available biomedical data sources, we created a
human gene dictionary and a disease dictionary by merging the entries of multiple public biomedical
databases. These two dictionaries provide gene and disease-related terms and cross-references between
the original databases.

2.2 Annotation of Corpus

The purpose of building an annotated corpus is to construct the training data for machine learning
that will filter out false positives from the dictionary-based results.

To build training and testing sets, 1,362,285 abstracts were collected through a Medline search,
using Medical Subject Headings (MeSH) terms. In this work, we used “Diseases Category”[MeSH]
AND (“Amino Acids, Peptides, and Proteins”[MeSH] OR “Genetic Structures”[MeSH]) as the
keywords. From the resulting abstracts, we generated 2,503,037 co-occurrences using the dictionary-
based longest matching technique. Each co-occurrence is a candidate of a relation between one disease
and one gene. We chose 1,000 co-occurrences randomly2, and they were annotated by one biologist.

Figure 2 shows an example of an annotation. Disease and gene candidates are highlighted: there are
four candidates in two co-occurrences. PRCC and PSA are candidate genes and renal cell carcinoma
and BPH are candidate diseases. These items were recognized by the dictionary-based longest matching
technique. The check boxes labeled correct gene and correct disease are marked by a biologist if he
considers the candidates to be correct gene (or disease) names3.

As for the annotation on disease-gene relations, we considered the following three aspects. In other
words, the annotator judged a co-occurrence as “correct” if any of the following three types of relations
between the gene and disease was described in the sentence.

– Pathophysiology, or the mechanisms of diseases, containing etiology, or the causes of diseases.
– Therapeutic significance of the genes or the gene products, more specifically classified to their

therapeutic use and their potential as therapeutic targets.
– The use of the genes and the gene products as markers for the disease risk, diagnosis, and prognosis.

2 We checked all the 1,000 co-occurrences and found that they were all different sentences and they all came
from different abstracts.

3 A name can be embedded in a different name. For example, the dictionary matching may find the disease
name APC in the term APC gene, in which APC would be annotated as “incorrect”. Embedded names are
a major source of false recognitions of gene/disease names.
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Fig. 3. An example of an annotated co-occurrence whose gene and disease are identified as correct but relation
as incorrect

Among 1,000 co-occurrences, 572 co-occurrences contained correctly identified diseases and genes
by a biologist. The important observation was that 94% of the 572 co-occurrences were annotated as
correct relations, which means that there are few false positives for relations if the disease and gene
names are correct. Therefore, we did not perform filtering for relations in this work. Figure 3 shows
an example of the remaining 6% of the 572 co-occurrences whose gene and disease were identified as
correct but whose relation was incorrect.

2.3 Filtering with a Maximum Entropy-based NER Classifier

To improve the precision of recognizing gene and disease names, we propose the use of a maximum
entropy model to filter out false positives. For smoothing, we used Gaussian prior modeling and tuned
this parameter with empirical experiments and set it to 300 for genes and 400 for diseases.

Features for NER The feature sets used in our experiments are as follows:

– Candidate names and contextual terms:
The features we considered were the candidate name itself as well as unigrams and bigrams. A
unigram refers to the word either before or after the candidate name; a bigram refers to the two
adjacent words either before or after the candidate name.

– Head word information and the predicate:
We used the head word information (the word itself and its part-of-speech) of the maximal projection
of the disease/gene name as a feature. This analysis is given by the deep-syntactic parser ENJU4.
In addition, we expect that an important clue for NER is whether or not the candidate is used
as an argument of a verb. This is because certain verbs in biomedical literature occur frequently
and have a relationship with a disease/gene name; for example, induce, activate, contain, and
phosphorylate. We named this kind of verb the predicate and considered it as a feature.

– The expanded form of an acronym:
One of the difficulties in term recognition from biomedical literature is the problem of ambiguous acronyms.
One acronym can be used with different meanings. We can solve this problem to map the acronym
of a candidate name to its full form by scanning the entire abstract. In practice, an acronym and
its full form usually occur simultaneously as full form (acronym) when they first appear in a
document.

– Part-of-speech (POS) tags:
We considered the POSs of the candidate name and its surrounding words. To tag the words with
POS labels, we used the Genia Part-of -Speech Tagger5 which is trained on a combined set of the
newswire corpus (Penn Treebank) and biological corpus (GENIA corpus6).

4 ENJU v1.0 (2004):
http://www-tsujii.is.s.u-tokyo.ac.jp/enju/index.html

5 GENIA Part-of-Speech Tagger v0.3 (2004):
http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/postagger/

6 GENIA Corpus 3.0p (2003):
http://www-tsujii.is.s.u-tokyo.ac.jp/genia/topics/Corpus/3.0/GENIA3.0p.intro.html
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Table 1. Affix feature

Prefix/Suffix Examples

∼cin actinomycin
∼mide Cycloheximide
∼zole Sulphamethoxazole
∼lipid Phospholipids
∼rogen Estrogen
∼vitamin dihydroxyvitamin
∼blast erythroblast
∼cyte thymocyte

∼peptide neuropeptide
∼ma hybridoma
∼virus cytomegalovirus

– Use of capitals and digits in the candidate term:
Capital characters and numbers frequently appear in biomedical terms. We considered whether
candidate names contain capital characters and digits or not.

– Greek letters in the candidate term:
Greek letters (e.g. alpha, beta, gamma, etc.) are strong indicators of biomedical terms. These
Greek letters appear in their original forms such as α, β, Γ (γ).

– Affixes of the candidate term:
Prefixes and suffixes can be very important cues for terminology identification. We considered the
11 suffixes given in Table 1. These affixes are commonly used in biomedical terms.

3 Experimental Results

We conducted two sets of experiments for disease-gene relation extraction. One is an experiment without
NER filtering and the other is an experiment with NER filtering.

3.1 Experiments without Filtering (Baseline)

Our baseline experiment is very simple: we assume that all disease-gene pairs recognized by dictionary
matching indicate relations. The performance of this baseline experiment is shown in the first row of
Table 2.

It should be noted that our dictionaries do not cover all disease/gene names, and thus we cannot
calculate the absolute recall in this experiment. Instead, we use relative recall as a performance mea-
sure, and the relative recall given by the baseline method is 100% by definition. In this approach, our
interest is in how precise our system is at correctly identifying the relations, rather than how often it
misses other meaningful relations.

3.2 Experiments with Filtering

The second set of experiments made use of the maximum entropy-based NER filter. Table 2 lists the
performance percentages of relation extraction. We found that NER filtering improves the precision of
relation extraction by 26.7% at the cost of a small reduction in recall. This suggests that the performance
of relation extraction is very much dependent upon the performance of NER. In this experiment, we
used the best combination of features for NER (see Table 3):

– Recognition of Gene names:
Contextual terms, capitalization, Greek letters, POS of disease/gene names and its head, words of
predicate and head and full forms if candidate names are acronyms.
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Table 2. Relation extraction performance

Precision(%) Relative recall(%)

without filtering 51.8 100.0
with filtering 78.5 87.1

Table 3. NER performance

Features Precision Relative recall
1 2 3 4 5 6 7 8 9 10 11 (%) (%)√ √

86.4 90.2√ √ √
85.9 90.2

G
√ √ √

86.2 90.6
E
√ √ √

86.0 90.2
N
√ √ √

86.3 89.4
E
√ √ √

85.9 90.2√ √ √ √ √
86.2 90.9√ √ √ √ √
86.5 90.5√ √ √ √ √ √ √ √
89.0 90.9√ √
88.5 97.8

D
√ √

88.5 97.9
I
√ √

88.6 98.1
S
√ √

88.6 98.1
E
√ √

88.5 96.0
A
√ √

89.8 95.5
S
√ √ √ √ √

90.0 96.6
E
√ √ √ √ √ √ √

89.6 96.6√ √ √ √ √ √
89.6 96.0

Note : 1) Candidate disease/gene names and Contextual terms; 2) Use of capitals in the candidate term; 3)
Use of digits in the candidate term; 4) Greek letters in the candidate term; 5) Affixes of the candidate term;
6) POS of disease/gene names; 7) POS of disease/gene names and unigram; 8) Head word; 9) POS of head
word; 10) Predicates of a candidate disease/gene name; 11) Expanded forms if candidate disease/gene names
are acronyms.

– Recognition of Disease names:
Contextual terms, capitalization, POS of disease/gene names and unigram words and words of
head.

All the experimental results for NER considered contextual terms. This is because this feature is
the most powerful in recognizing candidate names. It leads to improved NER performance of 6.6% for
genes and 2.1% for diseases.

4 Conclusion and Future work

The aim of this research was to build a system to automatically extract useful information from publicly
available biomedical data sources. In particular, our focus was on relation extraction between diseases
and genes. We found that named-entity recognition (NER) using ME-based filtering significantly im-
proves the precision of relation extraction at the cost of a small reduction in recall.

We conducted experiments to show the performance of our relation extraction system and how it
depends on the performance of the NER scheme. We could safely regard co-occurrences as containing
correct relations if candidate disease and gene names were considered to be correct.

In this work, we did not address the problem of polysemous terms, which would cause difficulty in
linking such terms with database entries. One solution would be to incorporate techniques for ambiguity
resolution into our system. For example, S. Gaudan et al. [7] proposed the use of SVMs for abbreviation
resolution and achieved 98.9% precision and 98.2% recall.
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Fig. 4. Sample co-occurrence of annotated corpus

Figure 4 shows the new version of the annotated corpus, which contains more detailed information.
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