FEEEA WL B 2006 —MPS—62 (27)
IPSJ SIG Technical Report 2006—BIO—7 (27)
2006,712,722

YA D INCE DS ARRDIEED FOFIET VT XL
BRI KM 1, 72, ki (2T, BT St

L RER AR I HRET SR SO TEHI
2 FERREE (LA NA A AV TART 4 VA Z—

BE (LEHTFDOYS THEEREZ DNEOEEN SHET ZREE, BIREENAT AV T x
TTF 4 7 ZADEBRICB T AEANGHEETHD. KmXiL, VI TICBIBZEAEE K D/ISAD
HOIEAERE IO D (AN Y MLA B Z bl b &, THEEUREANY MVeE T 2R EEDL
2HSTIRETHRTZMEEEZ S, i, HETE VS TOREZGIET 2 0IC, MEE
OfeE R ANEBICE D ANZRBEORELTS. WO U THRRERICED  BE
P ZLERRTS. BAOLEMH SO EHRET S EMERTIE, 2<K<T7TDLE,
L7 NI XL, BEORBEICH L TEK 61 RFORMERZBHICH T LNTER.

Enumerating Tree-like Chemical Structures from Feature Vector
Hiroki Fujiwara!, Liang Zhao!, Hiroshi Nagamochi!, Tatsuya Akutsu?

Department of Applied Mathematics and Physics,
Graduate School of Informatics, Kyoto University
2Bioinformatics Center, Institute for Chemical Research, Kyoto University

1{hujiwara, liang, nag}@amp.i.kyoto-u.ac.jp,
2takutsu@kuicr.kyoto-u.ac.jp

Abstract Inferring chemical structures from a given partial structure is one of the fundamental
problems in the field of bioinformatics such as drug design. In this paper, we consider a problem
of enumerating all tree-like chemical graphs from a given feature vector that represents occur-
rences of vertex-labeled paths with length K. We also introduce a variant of the problem whose
input contains a condition on the number of multiple bonds. For both problems, we design exact
algorithms based on a branch-and-bound method. Our computational experiments reveal that,
for 2 < K <7, the algorithm for the latter problem can find all solutions from a feature vector
of a known chemical compound with at most 61 atoms.

1 Introduction prediction rules. Feature vectors based on fre-
quency of labeled paths [9, 11] or frequency of
small fragments [6, 8] are widely used in these

Various computational approaches have been studies.

proposed for drug design, which is one of the
important targets of bioinformatics. Among
those, extensive studies have been done for

Kernel methods have been used mainly for
prediction problems so far. However, a new

prediction of activities of chemical compounds.
Recently, kernel methods have been applied to
prediction of activities of chemical compounds
[6, 8, 9, 11]. In most of these approaches, chem-
ical compounds are mapped to feature vectors
(i.e., vectors of reals) and then support vec-
tor machines (SVMs) [7] are employed to learn

approach was recently proposed for designing
and/or optimizing objects using kernel meth-
ods [4, 5]. In this approach, a desired object is
computed as a point in the feature space using
suitable objective function and optimization
technique and then the point is mapped back to
the input space, where this mapped back object

— 111 =



is called a pre-image. Let ¢ be a mapping from
an input space to a feature space. Then, the
problem is, given a point y in the feature space,
to find a pre-image z in the input space such
that y = ¢(z). It should be noted that ¢ is not
necessarily injective or surjective. If there does
not exist an exact pre-image, it is desired to
compute the approximate pre-image =* defined
by z* = arg min, dist(y, ¢(z)) (see Figure
1), where dist(y, 2) is an appropriate distance
measure. If there exist several or many pre-
images, it is desired to enumerate all possible
pre-images. The pre-image problem for graphs
is very important from a practical viewpoint
because it has potential application to drug de-
sign [5] by using a suitable objective function
reflecting desired properties.

_input space-...

feature space

Figure 1: Feature mapping and pre-image
problem for chemical compounds.

Several studies have been done on the pre-
image problem, see, e.g., [4, 5]. While heuris-
tic and/or stochastic methods were proposed
in these studies, exact algorithms have recently
been proposed. Akutsu and Fukagawa formal-
ized the graph pre-image problem as a prob-
lem of inferring a graph from the numbers of
occurrences of vertex-labeled paths [1]. They
show this problem is NP-hard even for planar
graphs of bounded degree. In [2], these results
were further improved. Nagamochi developed
a polynomial time algorithm for the case where
the lengths of paths are less than 2 [12].

In addition to these theoretical studies,
Akutsu and Fukagawa developed a branch-and-
bound algorithm for inference of tree-like chem-
ical structures [3]. It works within a few or few-
tens of seconds for inference of moderate size
chemical compounds with tree-like structures.
However, it does not work for larger size chem-
ical compounds. Besides, it does not output

approximate pre-images or does not enumerate
all possible pre-images. Therefore, further and
further development should be done.

In this paper, we consider the problem of
enumerating all tree-structured chemical com-
pounds with the given feature vector. We first
propose a branch-and-bound based algorithm.
Then we exploit the valence of hydrogen to
give a new formulation and propose a faster
algorithm. The result of computational experi-
ments show that we can treat an instance of 46
atoms (18 excluding hydrogen). This is an im-
portant step towards development of practical
algorithms for the graph pre-image problem.

The rest of this paper is organized as follows.
Section 2 gives some preliminaries, and for-
mulates a graph inference problem. Section 3
designs a branch-and-bound algorithm for the
problem. Section 4 introduces a new formula-
tion by exploiting a condition on the number
of multiple bounds as part of the input, and
modifies the branch-and-bound algorithm for
the new problem. Section 5 reports the results
on our computational experiments, and finally
Section 6 makes some concluding remarks.

2 Preliminary

2.1 Notations and definitions

Let £ denote a set of labels, where each la-
bel stands an chemical element. For exam-
ple, & = {H,0,C}. A function val : ¥ — Z*
is called a valence function, where Z* denotes
the set of nonnegative integers. For example,
val(H) = 1, val(0) = 2 and val(C) = 4. A multi-
graph G = (V, E) with a vertex-label function
£:V — X is called X-labeled. Then a chemical
compound can be viewed as a X-labeled loop-
less and connected multigraph such that each
vertex v labeled by £ € ¥ has the degree val(£).
For a K € Z7T, define BSK+1 = UfHlsk. A
function f : UK+l 5 Z is called a feature
vector of level K over ¥ of a compound graph
G if for all label sequences s = (£1,42,...,4k),
1<k < K+1, f(s) equals to the number of
paths in G whose vertices are labeled as 41, {2,
..., £, and vice versa. The feature vector of a
multigraph G of level K is denoted by fx(G).

— 112 —



Figure 2 illustrates a compound graph G and
its feature vector fx(G) with K =1.

»={H,0,C} feature vector
val (H) =1 A(G) (i.e., K=1)
val (0) =2 Ig g
val (C) =4 & 2
HH O
® (O OH 1
I CH 3
B—C0—0—©0—® |&% o
00 0
co 2
@ HC 3
oc 2
chemical compound G cc 2

Figure 2: Illustration of chemical compound
and its feature vector.

Given a vector g : £SK+1 — 7. we want
to find all chemical compounds G such that
fx(G) = g. In this paper, we focus on enumer-
ating tree-like compounds. A graph is called
tree-like or a multiple tree if it has no cycle
other than a pair of parallel edges. Through-
out the paper, we denote the number of vertices

by n =3 4es 9(£).

Problem 1 Given a finite set ¥, val : ¥ —
Zt, K € Z* and g : TSKF — Z, find
all X-labeled multi-trees T = (V, E) such that
fx(T) = g and deg(v) = wal(€(v)) for all
v € V, where deg(v) and £(v) denote the de-
gree and the label of v, respectively.

Input Output
g @ 0 T:
£={H,0,C) I
B E—-0—0—0—®
val (H) =1 c 2
- HH 0 ®
val (0)=2 i C>
val (C)=4 CH 3
HO 1 ® ® T
00 0
K1 | co 2 =@
HC 3
oc 2
cc 2 ®

Figure 3: An instance of Problem 1.

Figure 3 shows an instance of Problem 1 and
two solutions.
2.2 Tree structure in detail

In order to avoid duplicate enumeration, we
need a unique representation for the output

trees. For this, we define a unique “root” of
them and a unique total order among them.
Firstly, for any (multi-)tree, the next theorem
specifies a vertex or an edge as a unique root.

Theorem 1 ([10]) For any tree of n vertices,
ezact one of the next two statements must hold.

1. There exists a unique vertex v* such that
any subtree obtained by removing v* contains
at most [(n — 1)/2] vertices.

2. There exists a unique edge e* such that
each of the two subtrees obtained by removing
e* contains n/2 vertices. n

Such a vertex v* and an edge e* are called uni-
centroid and bicentroid, respectively. For ex-
ample, in Figure 3, T} has a bicentroid (C-C),
whereas T% has a unicentroid (the right C). Call
unicentroid and bicentroid centroid. We will
use it as the root of all multi-trees.

Next let us define a total order among rooted
multi-trees. First we fix a total order to ¥
(any one works). An ordered tree is then de-
fined as a rooted tree in which the children
vertices of any vertex or the bicentroid (if ex-
ists) are in the descending order (with respect
to the order of ) from the left to the right.
Let T be an ordered tree, and each vertex v
is assigned a label I(v) € X. Let the vertices
of T has a DFS (Depth-First-Search) sequence
v1,v2,...,V, (otherwise rename the vertices),
where the DFS starts from the root and tra-
verses according to the tree order. Let d(v)
denote the depth of a vertex v. We define the
depth label sequence of T as

DL(T) = (d(wy),£(vy),...,d(vn), £(vn))-

Let the order of depth label sequences be lexi-
cographically defined. Denote by T'(v) the sub-
tree of T of root v. We say that T is left heavy
if, for any j > 4, v; and v; are siblings implies

DL(T(vi)) 2 DL(T (v5))-

If the tree T has an edge root e (i.e., a bicen-
troid), let T and T5 be the left and the right
subtrees beside e, respectively. If 71 and T3 are
both left heavy and DL(Ty) > DL(T3), then we
say T left heavy. Taking the centroid as the
root, clearly any feasible tree can be equiva-
lently represented by a unique left-heavy tree.

— 113 =



2.3 Overview of the algorithm

We first give a brief overview of our branch-
and-bound algorithms. The details will be de-
scribed in the following sections.

The algorithm starts by enumerating the
centroid (the root vertex or the root edge of
the tree), and recursively add a vertex to the
current tree (the branching operation) as far as
none of the constraints (degree and feature vec-
tor) is violated (the bounding operation). As
noted before, we enumerate left heavy trees.

Branch-and-bound algorithm has a search
tree, which is called family tree in this paper.
Denote it by F. F has a root node (we say
“node” to distinguish from “vertex” in the com-
pound trees) who has two subtrees. Leaf nodes
on the left are all left heavy trees with a unicen-
troid, whereas leaf nodes on the right are left
heavy trees with a bicentroid. Let T be a node
in F. The parent node P(T) of T is the tree
obtained by removing the rightmost leaf from
T. Notice that P(T') remains left heavy.

3 Algorithm A

Leaving the details to the following subsections,
we give an outline of the first algorithm. It is
a recursive procedure, and the problem can be
solved by calling Gen(r) for the root r.
procedure Gen(T)
Input: a left heavy tree T'.
Output: all feasible solutions below T in F
begin
if the number of vertices in T is n then
/* Output a feasible solution */
if fx(T) = g then
Calculate the multiplicities for all edges
in T and get a multiple tree 7.
if T' is valid then Print 7" endif
endif
return;
endif
/* Else expand (i.e., branch) it */
for all vertices w in T to which a new leaf p
can be appended do
Append p to w to get a tree T);
Apply bond-cut on T,; /* bounding */
if T,, is not cut then

for all labels £ that are valid for p; do
Label p with £ to get a tree To,;
if fx(Tw,) < g then Gen(Ty,);
endif
done
endif

done

end /* of Gen */

3.1 Branching operation

In branching, we do not need to consider the
multiplicity of edges, because they can be cal-
culated later. In fact, the multiplicity of
an edge with a leaf endpoint v is obviously
deg(v) = wal(f(v)), and the multiplicity of
other edges can be found recursively. The fam-
ily tree F is searched by DFS (travel from left
to right). This is illustrated in Figure 4.

;

0-0—0

b

|

_&%—0870"0{*0 \

Figure 4: An illustration of DFS in the family
tree (we use only one label for simplicity).

We must explain how to enumerate all chil-
dren of a node T, i.e., to find all left heavy trees
by adding a new leaf to T. Let rg,71,...,7% be
the vertices on the rightmost path of T, start-
ing from the root. If the root of T is an edge
e, let rg be the right vertex of e. If r;, i > 1,
has an elder (i.e., left) sibling, let u; denote the
next elder sibling of r;. We say that T is active
at depth 4, ¢ > 0 if r; has at least 2 children and
DL(T(rs+1)) is a prefix of DL(T (u;+1)). If the

— 114 =



root of T is an edge e, let ug denote the left ver-
tex of e. If DL(T(r9)) is a prefix of DL(T (uo)),
we say that T is active at depth —1. The min-
imum depth at which T is active is called the
copy depth of T (CD(T)), which is defined as
oo if no such a depth exists.

For ease of notation, without confusing we
may write a vertex v; as ¢ in the following.

Lemma 1 ([13]) The vertices to which a new
leaf p can be appended are vertices on the right-
most path of T with depth smaller than the limit
depth (denoted by LD(T)) of T, which is

(1) £ if CD(T) = o0;

(2) i if CD(T) =4 < oo and DL(T(ri41)) =
DL(T (ui+1));

3)dlp—L)—1if CD(T) = i < o and
DL(T(ri+1)) # DL(T(uit+1)), where L
is the number of vertices of the subtree
T(uq;+1). |

Now we can explain how to add p to T. Due
to the page limit, we only explain the case when
n is even and there is a unicentroid. Referring
to Lemma 1, we consider the next four cases.

(i) The number of vertices on the rightmost
subtree adjacent to v1 is n/2 — 1. In this
case, we can append p only to v, otherwise
v; will not be the unicentroid. p can be
labeled by the same or lighter label than
the next vertex left to p.

Else if (1) in Lemma 1 holds, adding p as
the rightmost leaf with an arbitrary label
can give a new node to F.

(ii)

(iii) Else if (2) in Lemma 1 holds, we can ap-
pend p to r; as its rightmost child and label
it by an arbitrary label £ < £(r;41).

(iv) Otherwise (4) in Lemma 1 holds. Let y be
the parent of vertex p— L. We can append
p to vertex y+ L as its rightmost child, and
label p by an arbitrary label £ < £(p — L).

Notice that cases (ii)—(iv) add p only to the
limit depth of T'. To get other nodes of F, we
can simply move the added new leaf p from the
limit depth to its parent, and label it by the
same or lighter label than the next vertex next
to p. We repeat this until p gets to the root.

3.2 Bounding operation

There are two kinds of bounding operations.
One is by the feature vector. The other is by
the degrees of vertices. Checking them is not
difficult but we have to do it efficiently.

3.2.1 Updating feature vectors

We have three kinds of feature vectors. One is
the given feature vector. The second is fx(T)
for the partial tree T. The third is the dif-
ference of fx(T) and fx(T) for a child Tp of
T. For efficiency, these feature vectors are all
managed by the data structure trie.

Trie is a data structure used for fast search-
ing. It consists of a vertex-rooted tree, in which
a nonnegative integer w(v) and a label I(v) €
(the key) are assigned to each vertex v except
the root. No siblings share the same label. Sup-
pose a feature vector g is stored in a trie F'(g).
For any label sequence s = (l1,l2,...,1;) with
g(s) > 0, there exist vertices vo, vy, ..., v; sat-
isfying the next conditions.

1 v is the root of F(g). For all j =1,2,...,1,
vj—1 is the parent of v;.

2 l(n) =1, l(ve) =loy ..., l(v;) =1
3 w(v) =g(t).

Let us explain how to update the trie (i.e.,
the feature vector) of the current partial tree.
Suppose T and fg(T) are known, and a new
leaf p is just added with label ;. Denote the
new tree by 77. We want to compute fx(T7).

Let d; be the difference between fx (T}1) and
fix(T). It must be a feature vector for paths in
T, starting from p, and thus can be obtained by
a DFS (with path length limit K) in T} starting
from p. F(d;) can be constructed during the
DFS. By applying DFS in F(d;) and F(fx(T))
simultaneously, we can obtain F(fx(71)) by
composing F(fx(T)) and F(dy).

Once we have done for one label, the feature
vectors of other nodes differ only by the label
of p can be easily found. Moreover, we can
store F(fx(T)) globally for efficiency. When a
child is generated, we compose the difference,
and when the search for the child finished, we
decompose the difference. Further details are
omitted due to space limitation.

— 115 —



3.2.2 bond-cut

We introduce a bounding operation, called
bond-cut based degree constraints. Let T be
the current partial tree. We append new ver-
tex only to vertices on the rightmost path of T'.
This means that the multiplicity of edges not
on the rightmost path can be decided.

Consider the first time when a new leaf p
is appended to the tree T (cases (i)—(iv) in
the branching operation). Let the tree be T3.
Denote the parent of a vertex z in T} by q(z).
If w = q(p) = p— 1, then we cannot cut 71 by
degree (i.e., there is no violation). Otherwise
w # p— 1. Let P be the path from p —1 to
w. We update and cut nodes by referring cases
(i)—(iv) stated in the branching operation. Let
degr, (v) denotes the degree of a vertex v in T7.

(i) Find the multiplicity for all edges (starting
from the leaf) on P by wal(£(v)). If the
multiplicity of some edge is nonpositive,
cut Ty. If degr, (v1) > val(£(v1)), then Ty
can be cut still.

(ii) Cut T3 if val(¢(w)) < degr, (w).

(iii) The multiplicity of any edge {v,q(v)} on
P is the same as the multiplicity of {v —
L,q(v — L)}. Cut Ty and all its younger
siblings if val(é(w)) — degr, (w) < —2. If
val({(w)) — degp, (w) = —1, cut Ty only.

(iv) The multiplicity of any edge {v, q(v)} on
P is the same as the multiplicity of the
edge {v—L,q(v—L)}.

Consider other nodes of F (see the last para-
graph in 3.1). Suppose w is not an endpoint
of the bicentroid. Let z = g(w) and a new
tree To, € F is obtained by appending p to
z. Notice the multiplicities of edges on P in
T are equal to those in T7. For edge {z,w},
we can compute its multiplicity by val(4(w))
and degr,(w). If val(€(z)) — degr,(z) < -2,
we can cut 75 and all its younger siblings. If
val(£(z)) — degr,(2) = —1, then we cut T only.
Repeat this until p gets to the root. Note that
the label of p does not matter in bond-cut.

4 Problem with bonds condi-
tion

This section introduces a new formulation of
the problem to restrict a class of multi-trees.

Let £1,f2 € ¥ and b be a positive integer,
we call ¢ = ({{1,£2},b) a bond label, and b the
bond of c. Let Cyx denote the set of all bond
labels. We suppose that there always exists a
unique label H with val(H) = 1. The H-removal
transformation is to remove all vertices labeled
H. Let ¥* = ¥ U Cx. The single bond transfor-
mation is to replace multiple edges {u,v} by
a new vertex w and two new edges {u,w} and
{w,v}. The label of w is set to ({£(u),£(v)},b),
where b is the multiplicity of {u,v}. The bond
of edge {u,v} is defined by

(1) the bond of £(v) if £(u) € ¥ and £(v) € Cx,
(2) 1 otherwise (i.e., £(w), 4(v) € £).

The bond degree of a vertex v € £* is defined
by deg(v) = > {b({v,w}) | w is adjacent to v}.

See Figure 5 for an illustration for the trans-
formations.

@—O—@
©=© @—e@

H-removal

({0.,C},2)

@ single bond

Figure 5: Illustration for the two types of trans-
formations: H-removal and single bond.

Now we can give the new problem definition.

Problem 2 Given a finite set &, ¥’ C Cf,
val : SUY — Z+, K € Zt, g : (ZUY/)SK+L
Z, find all (BUY')-labeled trees T = (V, E) such
that fx(T) = g and 7125(1;) < val(€(v)) for all
v € V, where Egg;(v) and £(v) denote the bond
degree and the label of v respectively.

We can design an algorithm, called B to this
problem by sharing the same branching opera-
tion with Algorithm A (the details are omit-
ted). The difference is the bounding opera-

— 116 —



tion. Algorithm B also uses the next degree-
cut: when a branching operation tries to at-
tach a new vertex p to v, expand the node as
long as deg(v) < wal(l(v)) holds, otherwise ter-
minate the branching operation. Note that no
bond-cut will be used in Algorithm B.

5 Computational experiment

We have tested our algorithms on a Linux
PC with CPU AMD Sempron 3000+. The
time limit was set to 1800 seconds. The
instances were obtained from the chemical
compounds in the KEGG LIGAND database
(see http://www.genome.jp/kegg/). For Prob-
lem 1, we randomly picked up multiple trees
containing the hydrogen atom and treat ben-
zene ring as one atom of valence 6. Instances
of Problem 2 were obtained by applying the
H-removal and single bond transformations.

The results are shown in Table 1, where
“name” is the name of chemical compound
(KEGG number). Numbers n1, ng and n3 are
the numbers of the atoms, atoms except hydro-
gen and the number of vertices for Problem 2,
respectively. K is the level, and c_time is the
CPU time in second. T.O. means “time over”,
“ppe” is the number of nodes of the family tree
that were expanded, “fs” is the number of fea-
sible solutions found and “fc_time” is the time
when the first feasible solution was found.

From the table, we can observe that when
K increases, ppe drastically decreases. This
is because the constraints used for bounding
increased (the number of feasible solutions de-
creases drastically). However, there are cases
in which ppe decreases but the CPU time in-
creases. This is due to the updating complexity
of feature vector. Notice the CPU time of Al-
gorithm B is much less than Algorithm A. This
is due to the next observations.

(1) The percentage of hydrogen atoms is large.
(2) Most of the edge multiplicities are 1 (i.e.,
single bond).

Hence the decrease of vertices due to H-removal
transformation is much larger than the increase
of vertices due to single bond.

6 Conclusion and future work

In this paper, we have shown two branch-and-
bound algorithms for inferring chemical struc-
ture problems. In the branching operation, we
use labeled tree to avoid duplicate output of
isomorphic trees. For the bounding operation
in the first algorithm, we have developed an ef-
ficient bond-cut and employ new data structure
and methods for efficiency.

Moreover, by exploiting a condition on the
number of multiple bonds, we introduced a
new problem formulation and showed an even
more efficient ‘algorithm. Computational ex-
periments show that both algorithms can solve
many instances including a large one (C07178)
of 46 atoms (18 excluding hydrogen) for all
K = 2,3,...,7. The second algorithm can
even solve an instance of 61 atoms for all K =
2,3,...,T.

It is left as a future work to solve instances
with larger number of atoms.

References

[1] T. Akutsu and D. Fukagawa. Inferring a
graph from path frequency. Lecture Notes
in Computer Science, 3537:371-392, 2005.

[2] T. Akutsu and D. Fukagawa. On infer-
ence of a chemical structure from path
frequency. Proc. BIOINFO 2005, 96-100,
2005.

[3] T. Akutsu and D. Fukagawa. Inferring
a chemical structure from a feature vec-
tor based on frequency of labeled paths
and small fragments. The 5th Asia Pacific
Bioinformatics Conference (APBC 2007),
to appear.

[4] G. H. Bakir, J. Weston and B. Scholkopf.
Learning to find pre-images. Advances

in Neural Information Processing Systems,
16:449-456, 2003.

[5] G.H. Bakir, A. Zien and K. Tsuda. Learn-
ing to find graph pre-images. Lecture
Notes in Computer Science, 3175:253-261,
2004.

— 117 =



Table 1: Computational experiment result (see Section 5)

Algorithm A

Algorithm B

name nl/n2/n3 K | c_time ppe fs fc_time c_time ppe fs  fc_time
C03343 37/15/17 1 | T.O. 288,904,523 55,509  87.88 | 281.76 19,266,745 570,773 6.01
C03343  37/15/17 2| 9.15 859,084 9 3.26 0.16 5,167 9 0.13
C03343  37/15/17 3 | 10.58 636,078 2 5.81 0.21 4,615 2 0.17
C03343  37/15/17 4 | 10.74 442,816 1 6.22 0.22 4,092 1 0.17
C03343  37/15/17 5 | 12.50 401,439 1 7.36 0.25 3,476 1 0.20
C03343  37/15/17 6 7.82 212,685 1 3.89 0.23 2,911 1 0.19
C03343  37/15/17 7| 6.08 149,044 1 2.57 0.24 2,676 1 0.19
C07530 43/15/16 1 | T.O. 211,304,644 7,921  12.87 | 9504 ° 4,102,957 73,711 0.09
CO7530 43/15/16 2 | 313.83 18,084,598 55  70.82 1.66 43,651 55 0.05
CO07530 43/15/16 3 | 104.21 3,579,381 1 4068 0.81 16,131 1 0.09
CO7530 43/15/16 4 | 43.67 1,088,774 1 1397 0.52 8,019 1 0.08
CO07530 43/15/16 5 | 22.34 408,376 1 7.09 0.42 5,625 1 0.07
CO07530 43/15/16 6 | 21.99 333,876 1 7.37 0.35 4,643 1 0.07
CO07530  43/15/16 7 | 24.23 333,876 1 8.15 0.38 4,643 1 0.08
CO7178  46/18/19 1 | T.O. 240,462,194 16,389  10.54 | 1775.00 77,619,751 70,170 1.82
Co7178  46/18/19 2 | 201.25 13,216,617 16 2.32 1.00 21,502 16 0.02
CO7178  46/18/19 3 | 19.16 733,117 2 0.54 0.91 11,956 2 0.02
CO7178  46/18/19 4 | 4.07 115,381 1 0.76 0.30 3,154 1 0.11
Co7178  46/18/19 5 | 4.23 96,857 1 0.79 0.24 2,144 1 0.08
CO7178  46/18/19 6 | 4.67 93,086 1 0.89 0.26 2,089 1 0.09
Co7178  46/18/19 7 | 4.22 74,677 1 0.83 0.28 2,089 1 0.10
C03690 61/23/25 1| T.O. 262,113,862 0 T.O. 62,818,368 0
C03690 61/23/25 2 | T.O. 129,353,690 0 149.61 2,986,237 1,198 0.19
C03690 61/23/25 3 | T.O. 92,688,141 0 105.19 1,465,099 8 0.35
C03690 61/23/25 4 | T.O. 53,031,082 0 46.21 510,058 4 0.35
C03690 61/23/25 5| T.O. 39,624,064 0 33.65 283,553 2 0.41
C03690 61/23/25 6 | T.O. 32,815,752 0 18.98 132,439 1 13.02
C03690 61/23/25 7 | T.O. 30,108,057 0 15.40 101,098 1 10.39
[6] E. Byvatov, U. Fechner, J. Sadowski and Collect Czech Chem Commun, 56:1777-

G. Schneider. Comparison of support 1802, 1991.

vector machine and artificial neural net- i

work systems for drug/nondrug classifica- [11] P. Mahé, N. Ueda, T. Akutsu, J-L. Perret

tion. Journal of Chemical Information and and J-P. Vert. Cr.ra‘tph kern.els f(?r molec-

Computer Sciences, 43:1882-1889, 2003. ular structure-activity relationship analy-

sis with support vector machines. Jour-

[7] N. Cristianini and J. Shawe-Taylor. An nal of Chemical Information and Model-

Introduction to Support Vector Machines ing, 45:939-951, 2005.

and Other Kernel-based Learning Meth [12] H. Nagamochi. A detachment algorithm

ods. Cambridge Univ. Press, 2000.

[8] M. Deshpande, M. Kuramochi, N. Wale
and G. Karypis. Frequent substructure-
based approaches for classifying chemical [13]
compounds. IEEE Trans. Knowledge and
Data Engineering, 17:1036-1050, 2005.

[9] H. Kashima, K. Tsuda and A. Inokuchi.
Marginalized kernels between labeled
graphs. Proc. 20th Int. Conf. Machine
Learning, 321-328, 2003.

[10] V. Kvasnicka and J. Pospichal. Construc-
tive Enumeration of Acyclic Molecules.

— 118 —

for inferring a graph from path fre-
quency. Lecture Notes in Computer Sci-
ence, 4112:274-283, 2006.

S. Nakano and T. Uno. Efficient Genera-
tion of Rooted Trees. NII Technical Re-
port, NII-2003-005E, 2003.





