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Abstract

In our previous studies, the non-random performance of decision-making without prior information (Blind Choice) has been indicated.
This performance is well described by the Golden Ratio and its numerical properties through out experimental conditions. Therefore
we have suggested existence of some common mechanism for the Blind Choice. In this paper, we discuss a new numerical method to
study this mechanism. The basic idea behind this method is assumption of dynamical system employed for decision-making. The main
result obtained using the method is extraction of a specific space describing the system’s structures. Here we focus on the organization
of this space’s structure which is performed in accordance with interaction of repelling and attracting fixed point deployed across the
space. These results suggest that mental information processing underlying the Blind Choice is based on a chaotic system. This system
and the Golden Ratio are hypothesized to be contained in Implicit Primordial Knowledge.

Keywords: Blind Choice; the Golden Ratio (GR); GR-based proportions; Implicit Pre-knowledge; GR-based Flower-like Fractal,
Chaotic Dynamical System.

Introduction

A particular class of decisions is the selection from a
set of options. In the case when no prior information
about the options is available, all the options are
assumed to be of the same probability of selections.

The simplest example of such a case is coin-flipping.
Since the coin’s symmetry is usually assumed, the
probabilities of head and tail outcomes are equal to the
chance, at the level 0.5. This result is obtained using
classical probability theory. However, actual human
behavior (the frequencies of selection of head and tail)
produced by human has yet to be investigated.

Another example of uncertainty providing equal
probabilities of selection is the case when people have
to select one option from the set of options identical to
each other.

The first attempt to study human performance under
uncertainty has been done by Lefebvre (1992). Later he
has developed the Research of Bipolarity and
Reflexivity (2006). In the study he introduced some
practical approach to the aforementioned problem from
the point of view of human trends towards the different
poles. The model of the Autonomous Subject developed
in this research describes some fundamentals of the
Blind Choice. The key point of this approach is an
asymmetry of human choices rather than their
symmetry, implying equal probability of selection.
Furthermore, the asymmetry is derived from various
statistical data of individual human and social choices.
The key feature of the asymmetry is the Golden Ratio
(GR) ¢ (1.6180339...) which is used as a central ratio.

The inverted GR value is suggested to be intrinsic to
humans in conditions when an individual has no
external (other people’s opinion and etc.) or internal
(emotions and etc.) pressures. That is, under conditions
of so-called Free Will.

In our earlier work (Tarasenko, Inui and Abdikeev,
2006), the evidence for the implicit primordial
knowledge (pre-knowledge) possessed by the
participants and used during the Blind Choice was
provided.

Next, we proceeded to investigate the Blind Choice
behavior in greater details. We have found that the
human frequencies of selection are good described by
the Golden Ratio (GR)-based proportions. In contrast,
to the pure proportion of the GR such as inverted GR
(1/¢ ), we have obtained the GR-based proportions in
the shape of (g+n)/(¢ (n+1)¢+1), where n and i are
integers, and its derivatives which can be obtained by
decomposition of the enumerator (Tarasenko, Inui and
Abdikeev, 2007a and 2007b).

Furthermore, we have presented a special space
(Coefficient Space) describing the enumerators of
presented GR-based proportions. The origins of this
space have been described in our recent work
(Tarasenko, Inui and Abdikeev, 2007¢).

In this paper, we focus on the structure of Coefficient
Space in its part related to the chaos and its relationship
with dynamical systems. First, we provide a short
overview of experiments. Then we compare the results
through out experimental conditions. Next, we provide
as short introduction to the Coefticient Space and its
origins. Finally, we discussed the ingredient of chaos in
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the location coefficients in Coefficient Space and fractal

structure of both empirical and approximating
distributions.

Experiment
Objectives

The purpose of this experiment is to investigate the
human decision-making performance under conditions
of the Blind Choice.

Method

Subjects The samples for 2, 3, 4, 6 and 7 options of the
Blind Choice are 674, 412, 377, 560, 219 and 211
participants, respectively. All the participants had
normal or corrected to normal vision.

Stimuli Six columns with 2, 3, 4, 5, 6 or 7 identical
squares were presented as the stimulus. The stimuli had
the minimal information load (Alvarez and Gavanaugh,
2004).

Procedure At first all subjects read the written
instructions. No training was provided for any of the
subjects. The stimuli were presented to the subjects on
the computer screen.

Each column appeared in the same location: the
center of the state column matched with the center of
the computer screen.

At the beginning of experiment subjects performed
fixation task: they had to fixate a mouse cursor on the
circle at the center of the screen.

Subjects had to estimate location of the red circle in a
column. To complete this task they had to select one of
identical squares in a column (Figure 1).

Stimulus
Presentation

Decision

Fixation Making

0.5 sec

Self-paced

Decision time
Figure 1: The Experimental task.

Selection was indicated by a blue (black in Figure 1)
square inside the chosen cell.

Results and Discussion

For the purpose of the experimental data analysis the
squares in the column were enumerated with natural
numbers in increasing order, downwards starting from
the top square of the column.

An analysis of the frequencies of different responses
under the Blind Choice condition showed a statistically
significant difference between the frequencies of the

response choices and corresponding chance levels under
all the experimental conditions.

In the case of only two options, the Binomial test
revealed a significant difference between empirical
frequencies and the chance level of 0.5 (n = 674, p <
0.001)(Figure 2, a).
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Figure 2: The frequencies of various options selection
inthe case of 2, 3, 4, 5, 6 and 7 options.

For 3, 4, 5, 6 and 7-option conditions, the Chi-square
test revealed a significant difference between the
empirical frequencies and corresponding chance levels
¥2(2, 412) = 52,937, p < 0.001; %*(3, 377) = 143.350, p
< 0.001; (4, 560) = 176.982, p < 0.001; ¥(5, 219) =
108.260, p < 0.001 and (6, 211) = 185.947, p < 0.001,
respectively. The distributions are presented in Figure 2.

Next, we analyzed the empirical frequencies in
greater details. The main purpose of this analysis is to
determine whether there are common rules describing
the frequencies in all the experimental conditions.
Detailed analysis of 3 and S-option conditions. For
the purpose of the further analysis, we introduce a
frequency of selection as fr(p,c), where p is number of a
particular option and ¢ is the total number of options,
while fr¥(p,c) is approximation of the corresponding
frequency. The (p,¢) notion is used to identify a
particular option. For example, the frequency of the



option (5,5) in the case of 5 options is f#(5,5) = 0.11
(Figure 2, f).

In our previous paper (Tarasenko, Inui and Abdikeev,
2007b), it has been shown that response frequencies
were well described by the pure GR and GR-based
proportions. The pure GR proportions are based on
various negative integer degrees of the GR, which can
be obtained by identity (1)(id. (1)):

I = 1g"™ " + 1g™? (D),
where 7 is real number (Gazale, 1999).

Under the GR-based proportions were understand the
proportions obtained using combination of the GR and
real numbers. These proportions can be obtained using
id. (2):

n+
_n+é 1 @),
(n+Dp+1 ¢
where # is real number. This formula has been first
presented by Tarasenko et al (2007c).

The extension of ids. (1) and (2) is id. (3), which

represents general GR-based proportions:

A

(n+D)g+1g"™" 4

where n and i are real numbers (Tarasenko et al, 2007c).

In this part of the paper, we present the way the

approximations presented in our previous studies has
been obtained.

In the case of 2 options, the approximating
frequencies are obtained using id. (1) with n=0:
fr¥(1,2)= ligand fr¥2,2)=1/¢"

In the case of the 3 options, f#(3,3)/ fr(2,3) ~ ¢° and
Jr(2,3)+ fr(3,3) ~ 1/¢ . Then denoting f*(3,3)=x, we
obtain equation x +(4 2)x = I/¢, where x is any real
number, and its solution is x = 1/(3¢ + 1). Therefore the
sum fr(2,3)+ fr(3,3) can be described using id. (2) with
n=2 as (2+¢@)/(I+3¢). Consequently, fr*(2,3) equals
(I+gy/(1+39).

Summarizing the application of ids.(1) and (2)
together, we found the following approximations:
FXL3)=UF , frH23)=(1+@/(1+3¢) and fr¥(3,3)=
1/(1+3¢) (Figure 3 c). The difference between the
empirical distribution and its approximation as
evaluated by the Kolmogorov-Smirnov test turns out to
be insignificant (n = 412; DN = 0.333; K-S= 0.408; p =
0.996).

For the further analysis, we highlight two key points
related to the empirical frequencies and their
approximations.

There are no equal proportions among the empirical
frequencies. This is the first key point. Absence of the
equal proportions guarantees that uncertainty will not
arise in the next possible steps of decision-making.

The second key point refers to when id.(2)(in general,
id.(3)) should be used instead of id.(1). Using ids. (1)

and (3), it is possible to provide an iterative procedure
for acquisition of approximating frequencies.
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Figure 3: Acquisition of frequencies for 3 options.
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Figure 4: The iterative procedure in case o

acquisition of the frequencies is performed in an
iterative manner. The example of such an iterative
procedure is presented in Figure 3. In the first step n=0
and id.(1) is used to obtain frequencies of the options
(Figure 3 a)). In the second step n=1 and id.(1) is used
again (Figure 3 b)). However, two options have the
same frequency, which is in conflict with the first key
point. Therefore, in the third step id.(1) is substituted for
id.(3) with n=2, i=1. Consequently, we assume that the
coincidence of two frequencies in the complete set of
frequencies induces the re-division in accordance with
id.(3).

Next, to illustrate the iterative assignment of
frequencies, we employ an integer counter » and ids (1)
and (3) to obtain approximations for frequencies in the
case of 5 options as follows:

1) id.(1) with n=0: I=1/¢ +1/¢° (Figure 4 a));

2) id.(1) with n=1: 1/¢ =1/¢+1/¢° (Figure 4 b));

3)id.(1) with n=2: I/ =1/¢ + 1/¢* (Figure 4 c));

4)id(1) with n=3: I/¢’=1/¢'+1/¢’ (Figure 4 d)).

It appears that all the options are assigned with the

frequencies obtained using id.(1). But there are two

options with the same frequencies (1/¢") obtained
using this equation. Therefore id.(3) is used in the
next step;

5)id.(3) is used with n=4, i = 2: /¢ = (4+H/(5¢+1)

#). The numerator of right-hand side of the equality is

separated into the components 3, / and ¢ The location

of the frequencies given in Figure 4 ¢).

The resultant distribution is presented in Figure 4 e.
The Kolmogorov-Smirnov test revealed the difference
between the empirical distribution and its
approximation to be insignificant (n = 560; DN = 0.200;
K-S =0.316; p = 0.999).

We have shown that this procedure allows the
evaluation of the frequencies of options, and,
consequently, it can be used in principle for the
exploration of the inherit mechanism of the Blind



Choice. On the other hand, this procedure based on ids.
(1) and (3) provides the GR-based proportions.
Detailed analysis of 7-option condition. The
frequency fitting iterative procedure proposed in the
previous sections works perfectly for in the case of 3
and 5 options. However, implementation of the
proposed procedure tfor the case of 7-option condition
did not provide good enough fitting of the empirical
frequencies as the procedure of consecutive acquisition
of frequencies failed.

Here, we provide a modified procedure of the
empirical frequencies acquisition. Since the consecutive
frequencies’ acquisition failed, we looked for similar
properties for empirical distributions of 3-, 5- and 7-
option conditions.

For this purpose we analyzed the 3-D diagram of
frequencies of all odd-number options conditions. The
distributions are merged together to match the center
options. This means that f#(2,3), fr(3,5) and fr(4,7) are
in the same line. This line is the axis of symmetry. The
diagram is presented in Figure 5.
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Figure 5: The frequencies of odd-numbered-option
conditions.

The empirical distributions are merged by the center-
option frequencies, which are fr(1,3), f#(3,5) and
fr(5,7). In the new coordinate space fi(7,3), fr(3,5) and
77(5,7) will correspond to the points (4, Three), (4,Five)
and (4, Seven), respectively (Figure 5). It can be
inferred from Figure 5 that fir(1,3)~ fr(1,5 ~fr(1,7) and
fr(3.5) ~ fr(4,7). We consider these approximate
equalities to highlight the specific part of option 1 and
the middle option.

It can be inferred from the above iterative procedure,
that a particular value for variable n used as input for
id.(3) was (c-1), where ¢ is the total number of options.

Besides, the proposed procedure assumes the
acquisition of the frequencies for 3 and 5 options using
id.(3). In the case of 3 options, id.(3) was used with n=2
and i=I: 2+¢/(1+3¢)} and the frequencies were
obtained using decomposition into proportion (n-1)/¢’:
(1+@/(1+3¢) and 1/(1+34). While in the case of 5
options, the frequencies for three options were acquired

using id.(3) with n=4 and i=2:
(A+P/(1+59 Y=3/((1+5@ §+1/((1+58 G+ ¢((1+5¢)
#). The c_(zresponding pr_oportions are (n-1)/1 and 1/¢.
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Figure 6: The acquisition of frequencies for 7-option
condition.

Using the common features of the empirical
distributions and elements of the proposed iterative
procedure, we introduce a modified procedure bridging
the previous gaps.

In the case of the 7 options, we assume fi-#(1,7)=1/§"
and fi*(4,7)=1/¢. Therefore the cumulative unassigned
value Unfir* is (I-fr*(1,7)-fr*(4,7)=1/§. According to
the location of the options 1 and 4, all 7 options are
separated into two groups with unassigned frequencies.
Group 1 contains options (2,7) and (3,7). Group 2
consists of options (5,7), (6,7) and (7,7). We consider
that the Unfr* is distributed between theses groups in
I/¢ proportion. In this case, the greater part I/¢ is
assigned to Group 2 as it contains more options than
Group 1. Consequently, the cumulative frequency of
Group 2 is 1/4’ (according to id. (3)).

Then setting n=6 and i=4, id.(3) is used to obtain
frequencies for options (2,7) and (3,7): (6+¢)/
(B(1+78)=1/4#'" The denominator of the fraction is
divided in proportion (n-1)/¢ , therefore the resulting
frequencies are =S/ (1+74) and
FPB)=(1+@/ (F(1+79).

Next, we use equation (5) with n=7 and i=3 to obtain
frequencies for options (5,7), (6,7) and (7,7):
(7+@/(F (1+84) =1/¢ . The frequencies follow the
proportions given in case of 5  option:
FED=U(F(1+89), fr*67)= #(#(1+84) and
S5, 7)=6/(#(1+84)). The acquisiion of the
frequencies in the case of 7 options is presented in
Figure 6 b).

The Kolmogorov-Smirnov test revealed no significant
difference between the empirical distribution of the
frequencies and its approximation (n = 211; DN =
0.143; K-S = 0.267; p = 0.999).

Detailed analysis of even-number of options. Here we
employ a 3-D histogram for the analysis of the even-
numbered conditions presented in Figure 7. The
distributions are left-skewed in all cases. The skewness



value for the case of 4 and 6-option conditions are -
0.956 and -0.902, respectively.

Frequencies

Figure 7: The frequencies of even-numbered-option
conditions.

The even-numbered-option conditions are
characterized with an imaginary line of symmetry rather
than a particular option as in the case of odd-number of
options. The cumulative frequencies of options above
the imaginary line of symmetry are 0.775 and 0.744 for
4 and 6 options, respective. These frequencies are
scattered around the value 0.764, which is 2/4". The
Relative Error (RE) is calculated as

RE = |f# —fr*|/fr C))
where fr is actual cumulative frequency and fi-* is
approximation. The REs for the cases of 4 and 6 options,
are 0.014 and 0.026, respectively.

Therefore in the both. cases, the cumulative
frequencies are distributed in the same manner. In the
case of 4 options, the proportions of frequencies above
and below the line of symmetry are
Fr,9M(1,4)=0.595 and fr34/fr44) =~ 0.772,
respectively.  Therefore it is  assumed that
FHRM(L4)=1/¢ and fr¥(3,4//%(4,49=2/F. The
approximating distribution is fr*(1,4)=0.47, fr*(2,4)=
0.292, fr¥3,4)=0.105 and  fi*(4,4)=0.131. The
Kolmogorov-Smirnov test revealed no significant
difference between the empirical distribution of the
frequencies and its approximation (n = 377; DN = 0.25;
K-S =0.354; p = 0.999).

In the case of 6 options, besides the aforementioned
similarity with 4 options distributions, the distribution
shares the similarity with the distribution of frequencies
of 3 options. In fact, the empirical frequencies are
fr(1,3)=0.39, fr*(2,3)=0.443 and fr(3,3)=0.167. Now
we distribute 6 options among three groups: the first
group consists of only option (7,6), the second group
contains options (2,6), (3,6) and (4,6); the third group
consists of option (5,6) and (6,6). The corresponding
cumulative frequencies of given groups are 0.406, 0.425
and 0.169, respectively. Since the Kolmogorov-Smirnov
test revealed no significant difference between these

distributions (n;=412; ng=219; DN=0.333; K-S=0.408;
p=0.996), the distributions of cumulative frequencies
can be approximated in the same manner as the
distribution in case of 3 options (Figure 3 c)). The next
step is to distribute the cumulative frequencies among
the within-group options.

From the empirical data it follows that for the second

group fr(3,6)/fr(2,6)~ 0.65 and fr(4,6)/fr(3,6) ~ 0.64.
Since this proportions belong to confidence interval (1),
we consider that f1(3,6)/r(2,6) = fr(4,6)/fr(3,6)~ 1/4.
The approximated values of the given frequencies are
Jr*(2,6)=0.224, fr*(3,6)=0.138 and fr*(3,6)=0.085.
Finally, the proportion of the frequencies in the third
group is fr(5,6)/fr(6,6)20.42. We assume that this ratio
can be approximated with (/+¢)/(34+1). Thus, the
approximated values of the frequencies are
Jr*(5,6)=0.053 and fr¥6,6)= 0.118. The statistical
difference between the empirical distribution and its
approximation turns out to be insignificant (the
Kolmogorov-Smirnov test: n=219; DN=0.167; K-
S=0.289; p=0.999). Considering the increase in the
number of options to be a scaling operation, it shows
the self-similarity in the case of 3 and 6-option
conditions.
Analysis summary. Summarizing the above given
results, we can conclude that the GR-based frequencies
are intrinsic for the Human Blind Choice of identical
options located in a vertical line.

In the case of the odd-number of options, it was
possible to propose the iterative procedure of the
frequencies acquisition. This procedure is based on ids.
(1) and (3). This illustrates that the location of a
particular option relatively to the others is of great
importance.  Furthermore, the proposed procedure
renders the frequencies uniformly, thus providing a
strict description of its mutual similarity.

The similarity in structure of odd-number of options
distributions can be inferred from Figure 5. The
distributions are separated into two parts: to the left and
right from the center frequencies. The magnitudes of
frequencies decrease from both outer options towards
the center ones. This can be illustrated as follows:
LD > fr(27) > fr37) 5 fr(5,7) < fr(6,7) < fr(7.7)
and fr(1,5) > f¥(2,5); fr(5,5) > fr(4,5).

Meanwhile, for the even-numbered-option case, the
decreasing dynamics is characterized by one direction
towards the lowest option: fi(1,4) > fr(2,4) > fr(3,4)
and fr(3,4) < fr(4,4) (Figure 7).

Furthermore, taking into consideration the
illuminated self-similarity, we assume the general
similarity for all the distributions.

Object with self-similar structure are called fractals.
Fractals are of two types: either regular or irregular. The
regular fractals share the same rule through out, while
irregular fractals (or multi-fractals) have a set of rules



which varies for different patterns. The common
method to present the fractal structure is the Iterated
Function System (Falconer, 2003).

We consider that the given description of similarities
in structures of empirical distributions provides the
evidence for these distributions to be multi-fractals.
Furthermore, ids. (1) and (3) are suggested to be the

Iterated Function System describing these multi-fractals.

Evolution of the Blind Choice performance (1):
ingredients of chaes. To analyze human performance,
the new method for response frequency analysis has
been proposed. Its gist is the following representation of
the approximation frequencies fr*(p,c):
Jr¥(p.c) = k¥(p.c)D(c) (4)

where k*(p,¢) is coefficient corresponding to option p
and D(c) is normalizing factor equals to the inverted
sum of all the £*(p,c).

The eq.(4) allows for study of the coefficients derived
for the different conditions in the same coordinate space
— the Coefficient Space. An abscissa of the Coefficient
Space is number of a particular option (p), while
ordinate is value of a coefficient of corresponding
options (k*(p,c)).

In the recent paper Tarasenko et al. (2007c), the
structure of this space has been discuss in the case of 2,
3, 4 and 5 options. The main result obtained from the
study of the Coefficient Space is that particular
coefficients are connected with the imaginary straight
lines, whose parameters are either stable or functions of
the number of options. For instance, it was found that
coefficients of top (k*(l,c)) and bottom options
(k*(c,c)) are connected with the y-lines, whose equation
is

y=-déx+(c¢tgtl) (5)
for ¢ > 2, where y (ordinate axis) is real continuous
function of auxiliary continuous variable x (abscissa
axis).

Therefore, the coefficients £*(1,c) and k*(c,c) are
obtained as intersections of these lines (y-/ines) with
lines x = 1 and x = ¢, respectively. Therefore, the
general equations of these coefficients are

k¥(l,c)=cg+l (6)
k*(c,c)=¢+1 (7),forc> 2.

Similar equations has been found for coefficients
k*(l,c) and k*(2,c)(z-lines), k*(c-1,¢) and k*(c,c)(w-
lines). Another family of imaginary j-lines is used to
connect k*(c/2,¢) and k*(c/2+1,c), for even c, or k*((c-
1D/2-1,¢) and k*((c-1)/2+1,¢), for odd c. These line
families are valid for ¢ > 3. The general equation of the
ylines is

=-¢x+cé (8)
for ¢ > 2, where y (ordinate axis) is real continuous
function of auxiliary continuous variable x (abscissa
axis).

Using y-line and y-line, it is possible to provide new
approximations for the 4-option distribution in the
Coefficient Space: coefficients k*(1,4) and k*(4,4) are
obtained using egs. (6) and (7), while k*(2,4) = 2¢ and
k*(3,4) = ¢ are obtained as intersection of j~/ine with
x= 2 and x=3, respectively. The Kolmogorov-Smirnov
test revealed no significant difference between the
empirical distribution and approximation (n = 377; DN
= (0.250; K-S = 0.354; p = 0.999). Therefore, this
technique renders 2-, 3-, 4- and S-option conditions to
be of the same nature.

Moreover, the Coefficient Space allows us to explore
the relationship between approximating frequencies’
distributions through out experimental conditions more
explicitly as itgas been done in the previous sections.

Coefficients
£

Opf?ons
Figure 8: Comparison of the imaginary triangles for 3,
4 and 5 options.

However, it was yet possible to extend this technique
for greater number of options. In the case of 4 and 5
options, we consider self-similar triangles A4B4C4 and
ASB5CS, where B4 and BS are imaginary points; Ai
and Ci (i = 4, 5) are k*(1,i) and k*(i,i), respectively.
However, in the case of 3 options, point B3 is real and
coincide with £%*(2,3) (Figure 8). However, triangle
A3B3C3, where A3 and C3 are k*(1,3) and k*@3,3), is
similar to aforementioned two triangles. Therefore,
under all three conditions the structure of the
approximating distributions is setf-similar. Therefore, it
is possible to use linear operators of rotation and scaling
in order to obtain the approximating distribution of 4
options from the approximating distribution of 3 options.
Besides, only scaling operator is need to perform
transition from triangle A4B4C4 to triangle ASB5CS.
However, triangle DSESFS5 is not similar to other three
ones. Therefore, linear assumption provides
approximations only for four coefficients out of five.

To explain the occurred non-linearity, we suggest a
chaos-based analysis of the Coefficient Space.
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Figure 9: Repelling and attracting fixed point of affine
mappings in the case of 5 options.

Here we discuss the iterator mappings. The idea
behind is that the previous value of the functions is
taken as an argument for the next step. Let we have f{x)
mapping and starting point x,. Then x; = f{xp), x, =
J(xy)... The important notions is f(xy) = -.-(xo)))).
We consider the imaginary lines connecting various
coefficients to be these iterator mappings. In fact, such a
class of mappings is referred as the affine mapping fx)
=ax+b, a=0, b =0.

Recently, the piecewise models of chaotic attractors
have been presented (Amaral et al., 2006). Therefore,
we consider that it is possible to use aftine mappings for
the preliminary description of basic characteristics of
dynamics hidden beyond the location of coefficients in
the Coefficient Space.

Next, we analyze fixed point of affine mapping. To
obtain a fixed point, one should solve equation (9):

S =x )
where y = x is a bisector line or id-/ine. Therefore, both
coordinates of a fixed point x * are the same.

It is known from that if absolute value of iterator
mapping derivative value at the fixed point is less than
unit (|df{x*)/dx|[>1, x* - fixed point), this fixed point is
repelling fixed point. In contrast to the repelling fixed
point, the attracting fixed point occurs in the case when
| dftx*)/dx |<1, x* - fixed point. For the affine mapping,
the derivative df{x*)/dx is constant (df{x*)/dx = a) for
any real x.

Therefore, in the case of 2, 3 and 4 options, only
repelling fixed point have been found to be deployed
across the Coefficient Space.

However, in the case of 5 options, fixed points of both
types (repellors and attractors) have been found.
Besides, this case is characterized by the occurrence of
non-linearity. Therefore, we discuss the case of 5
options in greater details.

In Figure 9 and Table 1, we present all possible
straight lines and their equations connecting any two of
coefficients k*(p,5): L(p;,p;)-line, where p; and p, are
numbers of options, connects £*(p,5). The repellors
R(p.p,) and attractors A7(p;,p,) of these L(p,p,) lines
are marked with grey and white circle, respectively.

Table 1: Equations of lines L(p.,p;)
Line notion Equation

I(1,2) 42361x + 13.326
I(13) -1.7361x + 10.826
L(14) 2.4907x + 11.581
(15 -1.6180x + 10.708
L(2,3) 0.7639x + 3.3268
L4 -1.6180% + 8.0902
L(2,5) -0.7454x + 6.3448
L34 -4.0000x + 17.618
L(3.5) -1.5000x + 10.118
L(4,.5) 1.0000x —2.382

Therefore, the location of the coefficients in the case
of 5 options is explained by influence of both repellors
and attractors. We suggest that the interaction of
repellors and attractors causes the non-linearity to occur.
Evolution of the Blind Choice performance (2): GR-
based flower-like fractal. The possible fractal
properties of human performance under various
experimental conditions has been already discussed in
this paper. The reason for discussion was appearance of
iterative procedure and inside-group and between-group
similarities of even- and odd-numbered-option
distributions.

In this section, we state a hypothesis about the
structure of the fractal which describes distributions of
response frequencies under various conditions. We
present two operations describing evolution of this
fractal’s shape under various conditions.

The first operation is Spiking operation. It is shown in
Figure 10 a). This operation describes occurrence of the
pick (maximum value) while transferring form 2-option
condition distribution to the one of 3 options.

The second operation is Unfolding operation which is
characterized by shift of left and right lines forming a
pick in the Spiking operation. This causes an additional
“bottom™-line (connecting k*(2,4) and k*(3,4), Figure
10 b)) similar to the one in the case of 2 options to



appear (Figure 10 b) and c)). This procedure reminds
the unfolding of the flower blossom out (Figure 10 b)).
Finally, in the case of transition from 4-options
distribution to the one of 5 options, both Spiking and
Unfolding operations take place (Figure 10 c)). As it
follows from empirical data for 6 and 7 options, these
operations occur as well under those conditions.
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Figure 10: GR-based Flower-like Fractal: Spiking (solid
arrows) and Unfolding (dashed arrows) operations in

growing structure of Blind Choice distributions.

Therefore, we assume that this is evidence for the
fractal nature of the human performance during the
Blind Choice. According to the similarity with a flower
growing and basis of this fractal is the GR, we call this
growing fractal to be a GR-based Flower-like Fractal.

General Discussion and Conclusion

In this paper, we have illustrated how the GR-based
proportions presented in the previous studies have been
derived. We have also highlighted the matter of
similarity of both empirical and approximating
distributions.

An analysis of such a similarity using the Coefficient
Space has shown explicitly an assumed fractal nature of
human Blind Choice behavior. This fractal is a growing
GR-based flower-like structure.

Besides we have discussed the location of the
coefficients in the Coefficient Space which is
influenced by the repelling and attracting fixed points of
the presented iterator mappings.

The occurrence of such an influence and interaction
between repellors and attractors causes appearance of
non-linear phenomenon starting from the 5 options,
while under lower number of options, human
performance can be explained using linear operators of
scaling and rotation.

Therefore, we suggest that there is some non-linear
chaotic dynamical system underlying human Blind
Choice performance.

Finally, we consider that the human Blind Choice
behavior refers to the matter of the Free Will (Lefebvre,
2006). Therefore, aforementioned properties of the
Blind Choice behavior can be automatically applied to
the human Free Will uncovering its sacred structure
hidden from our sight before.
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