2007—BIO—9
200776714

FEFEN SR ©))

IPSJ SIG Technical Report

W

Self-organizing clustering: non-hierarchical clustering
for large scale DNA sequence data

KPS 08, TR T, RRBOE !, M T, RS, RATUR Y, N<FRAS
T R AR, § BRI A A VY — 280 & —, § ERE

Vi, 79 AF VY ZIEEKRKRDNA V=2 L2 2N HMH L CIEMITT 2720 0. BARNPOEELRITE
LRBENTVWS, bhbhid, BROPOIEFICKER DNA ¥V~ LY A% A VT X7 LA F NHBUC
H & IENMFET B, Self-Organizing Clustering (SOC) & MESHEB LTy F L elRL &, Tar
IR R I T AT S ANy Ve UTHREh, /0¥ %y bEBL T O O0-RBLUH
FA[BET H 5. Ty I u0F v~ RIid, http://rgp.nias.affrc.go.jp/programs/ &Y. HFL,
http://rgp.nias.affrc.go.jp/S0C/ LV ITRA 5.

Self-organizing clustering: non-hierarchical clustering
for large scale DNA sequence data

Kou AMANOWHS . Hiroaki ICHIKAWAT, Hidemitsu NAKAMURAT, Hisataka NUMA',
Kaoru FUKAMI-KOBAYASHI*¢, Yoshiaki NAGAMURA' and Natsuo ONODERA'
t National Institute of Agrobiological Sciences, 1 RIKEN BioResource Center, § University of Tsukuba

Recently, clustering has been recognized as an important and fundamental method that analyzes and clas-
sifies large-scale sequence data to provide useful information. We developed a novel clustering method
designated as Self-organizing clustering (SOC) that uses oligonucleotide frequencies for large-scale DNA
sequence data. We implemented SOC as a command-line program package, and developed a server
that provides access to it enabling visualization of the results. SOC effectively and quickly classifies
many sequences that have low or no homology to each other. The command-line program is down-
loadable at http://rgp.nias.affrc.go.jp/programs/. The on-line web site is publicly accessible at
http://rgp.nias.affrc.go.jp/S0C/. The common gateway interface (CGI) scripts for the server is also
provided within the package.

1 Introduction a command-line program (SOC commands) and re-
leased in 2003 [1, 2]. We then made the commands
accessible through a web browser designated as the

Self-organizing clustering (SOC) rapidly SOC server

produces non-hierarchical clusters from a large
amount of DNA sequence data by using oligonu-
cleotide frequencies. By evading time-consuming and

complicated sequence alignments, it works effectively
to classify sequences that have low or no homology to
each other and that cannot be classified with existing
clustering tools. When sequences are obtained from
promoter regions, non-coding regions, or are ran-
domly sampled from several species, they rarely have
homology with each other. SOC can classify even
such sequences.

A prototype of SOC was originally developed as

2 Program overview

The clustering algorithm of SOC is based on the k-
means and learns to move cluster nodes, which rep-
resent clusters, expressing the centroids of clusters.
The time complexity of the calculation is O(cnml),
where ¢, n, m, and [ refer to the number of clusters
specified by the user, number of sequences, size of the
vector that is comprised of oligonucleotide frequen-
cies, and number of loop iterations, respectively.



Sequence data Option settings

User input | USQ[T input and |
{Accession N bers pull-down selection

FASTA sequences

Numerical matrix —je* Type of input data

@ Conditions of .
¥ oligonucleotide frequencies

Matrix operation
aw matrix
TF-IDF
PCA

e Condjtions of i
i matrix operation i

Options of SOC commands§

; ]
1 v
| SOC commands

Figure 1: Overview of the SOC server.

The work flow of user input and settings. A thick
arrow represents data transformation. Thin arrows
represent data transfer. Left brackets “{” indicate
selection of items. Items with dots surrounded by
dash-boxes indicate conditions necessary for
the operation.

3 Algorithm and implementa-
tion

The SOC server consists of the following four func-
tions: (1) Preprocessing: generating a numerical ma-
trix whose elements correspond to the oligonucleotide
frequencies of the sequences. (2) Initializing: placing
cluster nodes at random or according to user speci-
fication. (3) Cluster node alignment: learning how
to move each cluster node so that it expresses the
centroid of the cluster. (4) Visualization: displaying
the results graphically. Functions (1) and (4) are re-
alized by a common gateway interface (CGI), while
(2) and (3) are executed by the SOC commands. The
CGI scripts are written in Perl language with a GD
module, and these are installed only on a Linux PC
at present. The SOC commands are written in C
language, and their compilation and execution have
been verified on many operating systems, including
HP-UX, Linux, Mac OS X, SGI-IRIX, and SUN OS.
Figure 1 shows the work flow corresponding to func-
tion (1) where the inputs by the user are handled
and transferred to the SOC commands through the
web browser. In initializing process corresponding
to function (2), the user.can select a cluster gener-
ating mode from four methods: “Diagonal”, “ran-
dom=Value”, “node=Central”, and “Grid”. In these
modes, soc-init command generates cluster nodes

I Read sample and cluster data.

Assign each sample node to the nearest clus-
ter node (Samples which are assigned to
same cluster node are members of the same
cluster).

1
Calculate the centroid of each cluster. ‘
[

Move each cluster node toward the given
centroid.

Calculate the distances between all given
two cluster nodes.

[
Unify a pair of cluster nodes with the short-
est distance, unless the distance is longer
than a threshold value given by the user.

)|
Cualculate each cluster radius (mean dis-
tance from centroid to sample nodes).

T
Generate a new cluster nodes in the cluster
which have largest radius, unless the radius
is shorter than a threshold value given by
the user.

1

lterations > User-specified loop

Return sample ID with clustered structure. l

Figure 2: Flow chart of learning process.

Unifying and generating operations are executed
with times set in user-specified loop. Therefore, this
operation has little influence in complexity of the cal-
culation.

on diagonal line, at random, on the samples near to
the centroid of the sample coordinates, or on lattice
points of the sample space, respectively. Figure 2
shows the algorithm of the learning process corre-
sponding to cluster node alignment (function 3) ex-
ecuted by soc-1m command. Figure 3 shows snap-
shots of the browser connected to the SOC server. In
the data input page (Figure 3a), the user can select
the query type from among “FASTA sequence”, “Ac-
cession number”, and “Numerical matrix”. When
“FASTA sequence” is selected, the SOC server gen-
erates a numerical matrix of oligonucleotide frequen-
cies from the input sequences. When “Accession
number” is selected, the server accesses the DNA se-
quence database to obtain the relevant sequences and
generates a numerical matrix. On the other hand,
when “Numerical matrix” is selected, the user can
directly input a numerical matrix. In any case, the



Table 1: Use of SOC to cluster 629 coding regions
from three domains based on the pentanucleotide fre-
quency.

Cluster
Domain 1 2 3 4
Eukarya 542 1 2 1
Bacteria 1 62 0 0
Archaea 0 0 20 0O

Sizes of coding regions are between 2.0 and 2.2 kbp.
Initial value of clusters was 25. Each value shows the
number of cluster members.

user can use normalized vectors when the box “Use
per kbp value” was checked. The analysis is executed
by cron daemon at specified intervals. When the job
is completed, the system notifies the user by an e-mail
containing the URL where the result is located.

One of the advantages of the SOC server is that it
provides the user with some clues to avoid problems
of local solutions caused by initial value dependency,
which often occur in learning type clustering meth-
ods. The following two functions achieve the advan-
tage, when their respective options are specified.

One of the functions generates cluster nodes with
equal intervals in a principal component space. In
the initializing process, principal component analysis
(PCA)'is made based on the oligonucleotide frequen-
cies. The SOC server divides the principal compo-
nent space into equal intervals and generates cluster
nodes on the lattice points. As a consequence, it is
likely that the SOC server is able to bypass the initial
value dependency and local solutions.

Another function is for dynamic generation and
unification of cluster nodes. In the learning process,
it is often observed that some members of a clus-
ter are located at a distance from the cluster center,
while different clusters are very closely located. In
these cases, the expected results might not be ob-
tained. To avoid the cases, the SOC server generates
new clusters to locate outlying specimens.and unify
closely related clusters into one. Using these proce-
dures, the SOC server maintains the validity of the
cluster radius.

Application

4.1 Genome-wide clustering

of Caenorhabditis elegans

Figure 4 shows genome-wide SOC clustering and
mapping of Caenorhabditis elegans based on the
tetranucleotide frequency. We segmented each chro-
mosome sequence of C. elegans into 1,000 bp pieces
and obtained 100,092 frames without overlaps. The
remainder was assigned to both ends of each chromo-
some. And the frames containing over 5% character
of ‘N’s were discarded. Thus, we used 94,460 frames
to classify them into five to ten clusters. Figure 4a
and b show the concept behind the mapping and the
obtained results, respectively. In Figure 4b, the lo-
calization pattern of cluster 1 members looks like a
broken line at the centromeric portion of each chro-
mosome. This pattern correlated with that of the
TTAGGC telomeric repeat (CeRep26)[3, 4]. The re-
sult indicated that SOC can detect the localization
pattern of a sequence repeat, even if the presence of
the repeat is not recognized a priori. The other clus-
ters (IDs 2-6) made no localization. In this mapping
method, only one or a few of the clusters could usu-
ally detect characteristic distributions.

4.2 Clustering of coding regions from
three domains

We selected 629 coding regions extracted from the
following five species that belong to three domains:
Aeropyrum perniz (Archaea), Rhizobium radiobacter
(Agrobacterium tumefaciens) strain C58 (Bacteria),
Arabidopsis thaliana (Eukarya, Plantae), C. elegans
(Eukarya, Animalia), and Saccharomyces cerevisiae
(Eukarya, Fungi). To avoid the influence of sequence
length, only coding regions of 2.0-2.2 kbp in length
were used for SOC clustering. Such coding regions
were obtained from the whole genome sequences of
A. perniz (20 coding regions), R. radiobacter (63),
and S. cerevisiae (231), and from chromosome 1 se-
quences of A. thaliana (228) and C. elegans (87). We
classified them on the conditions that the lengths of
oligonucleotide are 2-5 bp, and the initial number of
clusters are 5 to 50 (with steps of 5). The best result
was obtained, when the pentanucleotide frequencies
were used and the initial munber of clusters was spec-
ified as being between 20 and 30 (Table 1). Interest-



- i ! i > . - ¢
e . b Jor s v 3 - T - ot -
Yeny rogliest way skiccesafizdls, E ’
€ lushraz Kot . B &
i Rewt . B LY &
$j it T : e B “
e gy P IR T oAb s g
i ) ¢
Chedwne ©onedin H N i
; R i
Mot e
b wro
i
o
. i Wi T ks
' it -l
e [aer - f - -
- ey
g-
°
i .
i & e TR o 5o
| e F 4 v %
i o2 B Lat At = ¥ 2
i gihas Sy ;
! S i
“b f : ' ' ¢ i
sy f . i
- E o i

Figure 3: Snapshots of the SOC server.

(a) Data input page. The user can input sequence data, matrix options, and cluster node options. (b) Summary page.
The options specified by the user in “data input page” are summarized. {c) Plot setting page. The user can select the
parameters for X and Y axes. (d) Plot page. Samples belonging to a cluster are plotted in the same color. The user
can obtain sequence information (sequence, sequence ID, and cluster ID) when the dots are clicked.



Fn e

Figure 4: Clustering and mapping of all six chromosomes of Caenorhabditis elegans.

(a) Concept of mapping. Frames that are the same in size and that have no overlaps are prepared from each chromosome.
All the frames (members) of the clusters are mapped to their native positions on the genome. (b) Result of mapping.
The size of frames was 1,000 bp. The initial number of clusters was specified six. SOC found the regions corresponding

to the locations of TTAGGC repeats (Cluster 1).

ingly, most of the coding regions were classified into
their specific clusters. The cluster 1 was character-
ized by AT-rich sequences and most Eukarya coding
regions were classified into the cluster. The clusters 2
and 3 were characterized by poly-G/poly-C sequences
and by (GC)n tandem repeats, respectively. SOC
revealed the sequence characteristics of individual
species for all the sequences except five coding regions
from Eukarya and Bacteria. A unique coding region
classified in cluster 4 was derived from A. thaliana
and bore a repeated motif of 72 bp, which is a very
peculiar feature for a protein coding region. The se-
quence contains 18 leucine-rich repeats (LRR), and
no other sequence with high homology to the LRR
sequence was found in the DDBJ/EMBL/GenBank
database. In SOC, such a feature was not consid-
ered to belong to any other cluster. The other four
coding regions also had atypical sequence feature of
each domain and were positioned on the outskirts of
the cluster of the other members. Thus, these re-
sults demonstrated that SOC can recognize, distin-
guish and extract the features of individual sequences
with high accuracy.

5 Concluding remarks

In this paper, We showed two examples of clustering

for a number of nucleotide sequences using SOC. The .

results indicate that SOC is suitable for clustering
a large number of diverse sequences and extracting
specific sequence characteristics among them.

Acknowledgement

We thank Prof. M. Iwasawa (School of Library and
Information Science, University of Tsukuba), and Dr.
T. Yamaguchi (Cybernet Systems Co., Ltd.) for
helpful comments on SOC. CGI development for the
server was assisted by Mitsubishi Space Software Co.,
Ltd. This work was partly supported by a grant from
the Ministry of Agriculture, Forestry and Fisheries
of Japan (Green Technology Project: EF1001 and
EF1004).

References

[1] Amano,K.: Clustering DNA sequences using
self-organizing method. Abstracts of the 5th
Meeting of Japan Society for Information and
Media Studies, pp. 5-8 (2003).

[2] Amano,K., Nakamura,H. and Ichikawa,H.:
Self-organizing clustering: A novel non-
hierarchical method for clustering large amount
of DNA sequences. Genome Informatics, Vol
14, pp. 575-576 (2003).

[3] The C. elegans Sequencing Consortium:
Genome sequence of the nematode C. elegans:
A platform for investigating biology. Science,
Vol. 282, pp. 2012-2018 (1998).

Wicky,C.,  Villeneuve,A. M., Lauper,N.,
Codourey,L., Tobler,H. and Miller,F.: Telom-
eric repeats (TTAGGC)n are sufficient for
chromosome capping function in Caenorhabditis
elegans. Proc. Natl. Acad. Sci. USA, Vol. 93,
pp. 8983-8988 (1996).

4








