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DNA Repair Protein Detection and Classification via Machine
Learning
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DNA repair is a critical process in cells, repairing internal and external damage resulting from UV
radiation and DNA replication errors, to name only a few. Despite its important role, bioinformatics
research on DNA repair is limited. In this talk, we examine two basic problems for the application of
bioinformatics to DNA repair: detection of DNA repair-related proteins, and subsequent classification.
Results will show that machine learning techniques are highly capable in these two tasks.

1 Introduction

Cells of living organisms are constantly under attack from a myriad of destructive factors. Tobacco
smoke, UV radiation, and chemical alteration (such as chemotherapy) are three exogenous sources of
damage, while DNA replication errors, standard metabolism producing destructive free oxygen radicals,
and hydrolysis (addition of water to break up a molecule) are endogenous types of damage that are
constantly occuring. A text with extensive details on DNA damange can be found in Friedberg et. ol [8].

In response to the many types of DNA damage that occur, there are equally a multitude of ways
in which DNA repairs itself, listed in Table 1. These repair mechanisms greatly improve the stability
of DNA, cells, and life. For example, the DNA mismatch repair system improves the error rate when
copying DNA from one mistake per 107 nucleotides to one mistake per 109 nucleotides [1].

Table 1: An assortment of DNA repair mechanisms, organized by major category in accordance with the
listing in [8].

Repair Category | Repair Mechanisms

Base excision repair

Nucleotide excision repair

Excision Transeription-coupled nucleotide excision repair
Alternative excision repair

Mismatch repair

Single-strand break repair

Stzand Break Double-strand break repair

Direct Reversal | Reversal of base damage

Research on how and what damages DNA, as well as what genes (and hence proteins) are responsible
for repair has been ongoing for many decades. Every year new knowledge on DNA repair is becoming
available, giving researchers the sense that the field still has much to be explored. In 2005, Kimball
reported that there were at least 11 DNA polymerases encoded by our genes [10], though only a year



later Linn gave a talk in which he discussed the presence of at least 17 DNA polymerases [11]. So while
each of these repair categories has been observed and characterized in laboratories, there still remain
many open questions in regard to the complete and complex process known as DNA repair.

The discovery of new DNA repair knowledge via bioinformatics techniques is still at a relatively
primitive stage, and here we present a bicinformatics-based framework and results for two fundamen-
tal problems relating to DNA repair: detection or discrimination of DNA repair-related proteins, and
functional classification of proteins known to be related to DNA repair. By using information processing
techniques, we can automatically identify repair-related proteins in unannotated genomes, and undertake
large-scale analyses of DNA repair for many organisms.

2 Problem Definition and Methods

The two problems we consider are detection (or recognition) of DNA repair proteins, and functional
classification of DNA repair proteins. Let us first consider the detection problem.

2.1 DNA Repair Protein Detection

Detection of a DNA repair protein is a simple question: given a protein, does it belong to the class of
proteins which are DNA repair-related or not? The basis of our detection approach is machine learning;
in particular, the Support Vector Machine (SVM) has been shown to learn patterns very well [6, 3].
Formally, in an experiment, we are given the three datasets D, D_, and Dy, where D represents a set
of known DNA repair proteins, D._ is a set of proteins known to be unrelated to or not involved with
DNA repair, and Dy contains the set of proteins on which we wish to decide for each protein in the set
whether or not it is a DNA repair-related protein. Each dataset D contains a finite number of proteins
P1, P2, ---, Pip|, initially given in terms of their amino acid sequence information in FASTA format.
Since FASTA format sequences cannot be directly input into a SVM, we use the simple spectrum kernel
transformation to convert a protein’s amino acid sequence data into a numerical vector.

The spectrum kernel [13] is a transformation technique which counts the number of occurrences of
each key (in a set of keys) that appear in a query object. While such a definition implies that it could be
applied to chemical graphs or other structural analyses, the most common use of the spectrum kernel is
in sequence analysis. As a concrete example, if we are dealing with sequences, have the keys © = {A, B},
and we query against the sequence S = ABBAB, then the basic spectrum kernel K (X, S) results in the
vector

K,({A,B}, ABBAB) = (2,3)

because there are two As and three Bs. More generally, if we consider the k-spectrum kernel, we can
consider all combinations of exactly k input symbols ¢ € X, denoted by X*. The meaning of K, remains
the same: K,(X*,S) is the [Z}*-length vector representing the number of occurrences of each possible
sequence 040 . ..0k fOr O4,...,0r € % that is exactly k input symbols long. To extend the previous
example, consider the 2-spectrum kernel for ¥ = {4, B}. We now have 2 = {AA, AB, BA, BB}, since
this represents all possible combinations of inputs of exactly length 2. The calculation of K is then easily
verified upon manual inspection or computation to be

Ko(3* = {AA,AB,BA, BB}, ABBAB) = (0,2,1,1).

‘When performing detection of DNA repair proteins, we consider the 1-, 2-, and 3-gpectrum kernels on
amino acid data, though results are shown for 1- and 3-spectrum kernels only. Hence, for each amino acid
sequence representation of a protein input, we output a numerical vector of 20, 400, or 8000 dimensions.
It is intuitive that as the dimensionality of the numerical vector increases, the SVM has more dimensions
at its disposal when deriving a decision function and can hence improve its performance. After the
training databases D and D_ are converted to numerical format, the Support Vector Machine performs
learning on the databases and derives a decision function. Using that decision function, we evaluate each
transformed protein in Dy to arrive at a decision as to whether it is related to DNA repair or not.

Cross validation is used to create the datasets Dy, D_, and Dy. In preliminary tests, results were
similar for 5- and 10-fold cross validation. Experimental results in Section 4 are given for 5-fold cross
validation tests.



Table 2: DNA repair protein classification types used in experiments. The types listed in “Mechanism
Category” are the keywords matching the major DNA repair protein mechanisms identified in Table 1.
The types listed in “Supplement Category” are the remaining keywords selected for classification but not

listed in Table 1.
Category Protein Functionality

Mechanism Category | Excision, Mismatch

Atpase, Cross-link, Putative, Polymerase, Helicase, Nuclease,

Supplement; Category Recombination, Radical

In order to evaluate the SVM’s relative ability to correctly distinguish between DNA repair and non-
repair proteins, we compare its performance to a similar classification task done by using BLAST [2]. In
the case of BLAST, the sequences are not trausformed; a database D, of FASTA format DNA repair
protein sequences is provided to build a local BLAST database, and then each protein in Dy is BLASTed
against that database, providing an expectation value (e-value) which measures the confidence that the
query sequence is similar to the sequences in the database (hence similar to DNA repair proteins). For
BLAST detection, we only use a database of positive (DNA repair) examples for the reason that building
a negative (non-repair) database and testing non-repair examples against that database does not use the
DNA repair protein database as examples, and therefore cannot appropriately distinguish repair from
non-repair. To evaluate how well BLAST detects non-repair proteins, however, non-repair proteins are
BLASTed against a positive database. As with the SVM method, results via BLAST are confirmed using
cross validation.

2.2 Classification of DNA Repair Proteins

Classification of DNA repair proteins is done in a one-versus-rest (1vR) format. By transforming the
problem in this way, we can use the same testing framework developed for detection of DNA repair pro-
teins, but for classification D represents one particular class of DNA repair proteing, and D_ represents
all other types of repair proteins in a given database excluding class D . The classes selected for DNA
repair classification are in Table 2, and were selected upon manual inspection of annotation information
for the repair-specific databases listed in Table 3. Dy in this context is the subset of DNA repair proteing
we have reserved for testing the ability to recognize that a protein belongs to a certain class. As with
detection, Dy is created in the cross validation technique.

Identical to detection experiments, we use the spectrum kernel transformation in conjunction with the
SVM method, and the unchanged amino acid sequences for BLAST. Technique performance is evaluated
via cross-validation for classification as well.

3 DMaterials and Experiments

Databases of DNA repair proteins and non-repair proteins were obtained from several sources. We used
the KEGG database [9] API to obtain a set of proteins with DNA repair in their annotation, as well as a
set, of histones, a similar type of protein which also binds to DNA and resides in the nucleus. We added an
additional histone dataset provided by the NIH {12]. In order to test a more realistic multifunction group
of non-repair proteins, we queried the UniProt database for “nuclear AND NOT dna repair”. To isolate
each technique’s DNA repair-specific performance by using another DNA repair database, we queried the
UniProt database for “DNA repair”, and downloaded the resulting query hits.

Upon their initial download, the datasets are not filtered to remove identical or similar sequences,
which may occur if identical or similar proteins are present in the genomes of two related organisms.
Since filtered datasets better test the abilities of the SVM and BLAST methods, we filter the source
datasets at various levels of similarity. The BLAST suite offers a program titled blastclust for generating
clusters of specified sequence similarity. The source and resulting dataset sizes from filtration are given
in Table 3. Also note that the databases downloaded are not for any particular organism, but instead
constitute sequence knowledge across all organisms.



Table 3: DNA repair and non-repair data sets obtained from multiple sources, and their resulting dataset
sizes after filtration at various levels of similarity. Datasets filtered at 30%, 40%, and 60% similarity had
a blastclust overlap threshold of 50%, while 80% and 100% similarity clusters had an overlap threshold
of 100%.

Sequence similarity threshold
Data source Original Size and resulting dataset size
100% | 80% | 60% | 40% | 30%
KEGG DNA Repair 3742 3374 | 2743 | 1690 | 854 | 526
KEGG Histone 2648 2117 | 1608 | 792 | 414 | 335
NIH Histone 2189 1370 | 553 | 77 11 6
UniProt Non-repair 4519 4366 | 3293 | 2080 | 1513 | 1182
UniProt DNA Repair 3165 2936 | 2415 | 1478 | 766 | 473
Combined Repair 6907 4751 | 3851 | 2309 | 1155 | 688
Combined Non-repair 9356 7574 | 5321 | 2900 | 1914 | 1494

‘We performed a number of experiments in a logical fashion in order to test the SVM and BLAST
methods with different datasets. By testing with many datasets, we remove bias toward any one particular
dataset. Inspired by the work of Bhasin et. al [3] which used SVMs to identify histones, we started hy
performing detection experiments for DNA repair proteins versus histones. After testing both KEGG and
NIH histone databases, we changed the negative dataset to the more realistic and multifunctional non-
repair dataset obtained from UniProt. Next, we replace the KEGG repair dataset used in the first three
experiments by the UniProt repair dataset, while keeping the negative dataset fixed on multifunctional
non-repair proteins. To conclude our detection experiments, we combined the two repair sources and
the three non-repair sources into aggregated files, filtered the resulting datasets, and ran subsequent
experiments using the two aggregated files as positive and negative databases.

Since the classification experiments require the use of a DNA repair-only database as the data source,
we use the KEGG and UniProt databases for classification. The filtered datasets are used for classification
purposes as well, testing the 1vR generalization capability of SVM and BLAST on increasingly smaller
datasets. A relatively simple script divides the database into subsets based on the fixed list of keywords
given in Table 2 that appear in annotation information.

4 Results

4.1 Performance Assessment 1: Accuracy

The most intuitive way to measure the performance of the machine learning techniques is to measure
the accuracy of the technique when cross validated. Results for detection can be found in [4], with the
SVM achieving 90-99% accuracy when tested using KEGG DNA repair proteins against KEGG and NIH
histone datsets. SVM classification experiments reported in [5] indicate approximately 95% accuracy for
the ten types of proteins listed in Table 2.

With a high level of prediction accuracy, it may appear that the SVM is clearly the technique of
choice for detection and recognition of DNA repair proteins. However, the approaches in [4] and [5] suffer
several fallbacks which impose the need for additional verification of the technique’s usefulness.

The first is that there is no comparison to another machine learning or inference technique. In other
words, it may be possible that Hidden Markov Models [7] or BLAST can achieve equal performance.
Second, the techiques are only being evaluated at a single threshold, and do not indicate how the tech-
niques perform over a multitude of thresholds. As both the SVM and BLAST techniques output a score
indicating a level of confidence in the decision (for either detection or classification), we can further filter
out only the “highly confident” proteins by raising the necessary output score requirement (threshold).
By doing this we can have greater confidence that the machine’s decision is the correct one, though we
may miss some genuine DNA repair proteins that simply did not have a high output score. Conversely,
we can lower the threshold to be sure to collect all DNA repair proteins, but we introduce the risk of
including proteins which are not truly DNA repair-related.
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ROC Analysis: UniProt repair vs. UniProt non-repair, Seq. Threshold 30%
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Figure 1: Detection experiments using the UniProt DNA repair protein database and the UniProt multi-
function non-repair protein database. SVM experiments are performed using 1- and 3-spectrum kernels
before input to the SVM, which uses the RBF kernel with a gamma value of 2.4 for similarity calculations.
BLAST experiments are performed as described in Section 2. The total performance AUC statistic shows
that BLAST is the better technique, though this is biased because of the use of blastclust to generate
dissimilar datasets. For the 30%-filtered dataset, the SVM method can achieve 100% true positive detec-
tion both quicker and with a lower false positive rate than the BLAST method. As more data becomes
available in the 60% dataset, the BLAST technique performs better.
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Figure 2: Classification experiments using the KEGG DNA repair protein database filtered at 40%
similarity. SVM experiments are performed using the 1- and 3-spectrum kernels, and a RBF kernel with
a gamma value of 2.4 for similarity calculations. BLAST experiments are perforied as described in
Section 2. With respect to AUC, the SVM method outperforms the BLAST method for the protein
type atpase, though BLAST is the AUC winner for identifying DNA polymerases. The SVM method
produces results on par with or better than the BLAST method despite the KEGG dataset being created
and maintained via homology searching similar to BLAST (9], and despite the use of blastclust to create
dissimilar datasets.



4.2 Performance Assessment 2: ROC and AUC

The tradeoff between identifying true DNA repair proteins while allowing some non-repair proteins to
be misjudged, using different threshold levels, is indicated through the use of a Receiver Operating
Characteristic (ROC) curve. By using a large range of thresholds (based on output values from the SVM
and BLAST methods), we visualize the ability of each technique to recognize and classify DNA repair
proteins.

Let us define the four types of outcomes in detection experiments: true positives are proteins that
are known to be DNA repair-related and predicted to be DNA repair-related; false negatives are proteins
that are known to be DNA repair-related but predicted to be non-repair; true negatives are proteins that
are known to be non-repair and predicted to be non-repair; and false positives are proteins known to he
non-repair but predicted to be DNA repair-related.

Figure 1 shows ROC curves for the UniProt repair versus UniProt non-repair detection experiment,
where datasets have been filtered down to 30% and 60% sequence similarity. The curves show that both
techniques are good at detecting DNA repair proteins at both 30% and 60% similarity levels, achieving
total Area Under the Curve (AUC) scores of over 0.75 in all experiments (the maximum AUC possible
is 1.0 for an ideal method). Upon inspection it can be seen that the BLAST method has higher AUC
scores. This is an unfortunate bias due to the way data is prepared, because of the use of blastclust to
create similarity clusters. Since the BLAST algorithm creates the clusters, it is a matter of course that
the BLAST algorithm can better recognize DNA repair proteins from those clusters.

The results of classification are less inclined towards BLAST despite blastclust being used to generate
the datasets. For clarity purposes, let us again define the four types of outcomes in the classification
experiments: true positives are proteins that are known to have a specific function in DNA repair and
are predicted to have that function (e.g., a polymerase predicted to be a polymerase); false negatives are
proteins known to have a function but predicted not to have that function (e.g., a polymerase predicted
to be a non-polymerase); true negatives are proteins known to not have a specific function and are also
predicted in such a way (e.g., a non-polymerase predicted to be a non-polymerase); and false positives
are proteins predicted to have a certain function but are actually known not to have that function (e.g.,
a non-polymerase predicted to be a polymerase).

In Figure 2, ROC curves are given for DNA repair atpase and polymerase classification experiments,
For atpase, the SVM method produces a better result than BLAST, though more curiously the 1-spectrum
kernel is the top performer. We can attribute this to overtraining on a smaller amount of data, as exper-
imental results at the 30% similarity level were similar. For 60%-100% similarity datasets, experimental
results (not shown here) show that the 3-spectrum kernel SVM was the best performer among all meth-
ods. As mentioned in Section 2, the higher dimensionality of the 3-spectrum kernel provides greater
flexibility in deriving a decision function in the presence of more data resulting from higher similarity
thresholds.

For the protein type polymerase, BLAST is the winner, as shown in the bottom half of Figure 2.
In this situation, the difference between the 1- and 3-spectrum kernel is evident, though BLAST still
performs 4% better than the 3-spectrum SVM.

For the remaining eight types of proteins, results vary and largely depend on the level of sequence
threshold. blastclust does introduce a bias for BLAST, though the SVM does manage to compete well
even with the bias. As exemplified by Figure 2, approximately half of the protein types are better
classified using the SVM, with the other half being better predicted via BLAST.

5 Discussion and Future Developments

The spectrum kernel based SVM and the standard BLAST methods do a good job of detection and classi-
fication, in terms of both accuracy and AUC. Unfortunately, the use of blastclust to generate increasingly
dissimilar datasets introduces a bias into the performance of BLAST when comparing the SVM technique
against it. As a result, future work should have a way to generate smaller datasets that do not suffer
the bias presented here. Though less biologically significant, one possible way to generate datasets is
to randomly select a fixed size or percentage from the original database, and then perform experiments
over a large number of randomized trials. In this way, the techniques can be analyzed for their statistical
performance as well.



The framework discussed in this report is a basic framework for application of machine learning to
DNA repair. From here, several projects or extensions are possible, of which a few we consider below.

Irrespective of the bias from blastclust, the techniques are accurate enough to apply toward the mass
scanning of unannotated genomes. It is an interesting research problem to see if there are trends across
all genomes with respect to the amounts and types of DNA repair proteins. Such an analysis would be
useful because of its real-world application.

Counstruction of a DNA repair protein interaction network in silico for many organisms would open
research to examine if the interactivity in DNA repair has properties such as scale-free connectivity, which
would be indicated by the presence of hubs, and the identification of several crucial proteins that keep the
DNA repair process normally functioning. By completing such a network and analysis, we may be able
to design better drugs for the human immune system. The link from this work to the proposed network
extension is the use of machine learning techniques to automatically identify the proteins in a database
for inclusion in the network.

The spectrum kernel by itself provides good performance in detection and classification of DNA repair
proteins. However, it includes no particular biological knowledge. A more useful kernel method for DNA
repair should be able to make use of DNA repair specific information, such as a repair protein profile
alignment or repair protein structural properties.
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