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Abstract The biological experimental technique using transfected cell arrays has been developed
for observing behaviors of protein pathways and genetic networks under various environments in
living cells. It is often useful to allocate several reporter genes for cell array analysis. In this
paper, we consider the problem of selecting the most effective set of reporter genes. We propose two
graph theoretic formulations of the reporter gene allocation problem, and show that both problems
are hard to approximate. We propose integer programming-based methods for solving practical
instances of these problems optimally. We apply them to apoptosis pathway maps, and discuss
biological significance of the result.

1 Introduction

Finding novel target genes for the treatment of diseases is an important topic in drug design and
systems biology. By reason of its importance, various approaches have been proposed. Among these,
transfected cell microarrays (cell arrays for short) are regarded as a potentially powerful approach
[1, 2, 3, 4]. Cell arrays are complementary technique to DNA microarrays. The most important
difference is that each spot in a DNA microarray corresponds to a gene, whereas each spot in a
cell array corresponds to a cluster of several tens or hundreds of living cells. This property enables
us to observe times series data of gene expression in living cells. Furthermore, upon the addition
of cells and a lipid transfection reagent, slides printed with ¢cDNA become living microarrays, in
which some specific gene is overexpressed. On the other hands, it is also possible to knock out
some specific gene by using siRNA [1, 3]. Therefore, we may be able to observe effects of gene
overexpression or gene knockdown by using cell arrays. We may also be able to observe effects
of external signals on gene expressions in living cells. In order to observe the effects using cell
arrays, we may need reporter genes, which are designed to measure the expression level of gene or
the corresponding product through the magnitude of fluorescence. Over the past decade, a battery



of powerful tools that encompass forward and reverse genetic approaches have been developed to
dissect the molecular and cellular processes that regulate disease. In particular, the advent of
genetically-encoded fluorescent proteins, together with advances in imaging technology, make it
possible to study these biological processes in many dimensions [5]. Importantly, these technologies
allow direct visual access to complex events as they happen in their native environment, which
provides greater insights into human diseases than ever before [6, 7). However, the cost (both in
labor and money) of introduction of reporter genes to a cell is very high. Thus, we cannot use a lot
of reporter genes. Instead, we should allocate several or several tens of reporter genes which are the
most efficient for identifying the pathways that are significantly activated or inactivated by means
of external signals or environmental changes.

There exist related studies. Ruths et al. recently proposed a framework for computational
hypothesis testing in which signaling networks are represented as bipartite directed graphs [8]. In
their framework, each network contains two types of nodes: nodes corresponding to molecules and
nodes corresponding to reactions. They considered two problems: the constrained downstream
problem and the minimum knockdown problem. The latter one is closely related to our problem
and is to find a minimal set of nodes removal of which disconnects two given sets of compounds.
They defined the minimum knockdown problem as a graph theoretic problem. They proved that
the problem is NP-hard and proposed an iterative and randomized heuristic algorithm.

In this paper, we consider graph theoretic formulations of the reporter gene allocation problem.
Since there is no consensus mathematical model of genetic networks or signaling pathways, we do
not assume any specific models such as Boolean networks and Bayesian networks. Instead, we treat
each network as a directed graph, where each edge can have a weight. Then, we formulate the
reporter gene allocation problem as problems of selecting a set of nodes that covers as many nodes
as possible, or selecting a minimal set of nodes that covers all the nodes in a network, where we
say that node v is covered by node u if there exists a directed path from « to v within a specified
length. We prove that these problems are NP-hard. Furthermore, we prove that these problems are
hard to approximate. We also show that some connection between these problems and the set cover
problem (along with its variant). In order to solve realistic instances, we formulate these problems
as integer programs (IPs) and apply a famous IP solver (CPLEX) to solving instances of these IPs.
This approach is reasonable because a close relationship between integer programming and the set
cover is known [9]. It should be noted that our approach is significantly different from that in [8]: (i)
problems and network representations are different from each other, (ii) optimality of the solution
is not guaranteed in [8], whereas optimality is guaranteed in our approach.

We perform computational experiments using a real biological network. The set of allocated
reporters for a real network is reasonable from a biological viewpoint. Furthermore, the proposed
method can find the optimal solutions within a few seconds. These suggest that the proposed
approach is practically useful for finding an optimal set of reporter genes.

2 Allocation Problems

In this section, we define two optimal allocation problems, P1 and P2. Biological networks such as
gene regulatory networks and signaling pathways can be considered as a directed graph G = (V, E)
with a set of nodes V = {v1,...,un} and a set of directed edges from v; to v;, (v;,v;) € E. In
gene regulatory networks, a node means a gene, and in signaling pathways, a node means a protein.
It should be noted that a reporter gene can be used both for measuring gene expression and for
measuring abundance of proteins.

We define that a node v is a neighboring upstream node of a node v, if there is a directed path
within the length of a constant L from v to v, in G. In this case, we also say that v is covered by
vr. For a set of nodes R, we say that v is covered by R if v is covered by some node in R. This
definition can be justified as follows: if some node v covered by v, is affected by external signals
and/or environmental changes, it is highly expected (for small L) that v, is also be affected. That



Figure 1: Example of nodes covered by a reporter node when L = 2 in a directed graph G = (V, E)
with V' = {v1,...,v7}. In this case, v3, v3, v4 and vg are covered by vg.

Figure 2: Left: Transformation of an instance I = (U = {uy,...,un},S = {s1,...,8},k) of the
maximum coverage problem to Problem P1. Right: Transformation of I = (U, S) of the set cover
problem to Problem P2.

is, we may infer that a subnetwork around v, is affected by external signal or environmental change
if v, is affected, and we want to cover as many parts of the network as possible.

We assume in this paper that L does not depend on the reporter node and each edge has unit
length. This assumption is reasonable because it is difficult to determine L for each gene or protein
and the length of each edge. However, the proposed methods can be modified for a general case
in which L depends on the reporter node and each edge has distinct length (or weight). Figure 1
shows an example of covered nodes by using a reporter when L = 2.

Problem P1 maximizes the number of covered nodes by using K reporters, and is defined as
follows.

Definition 1 (Problem P1) Given a directed graph G = (V,E) and two integers L and K (<
[V]), find a set R CV of cardinality at most K mazimizing the number of nodes covered by R.

It should be noted that R corresponds to a set of reporters. For sufficiently large K, we can
cover all nodes of V' using the solution of Problem P1. In some cases, we may want to cover all the
nodes by using a minimum number of reporter nodes. Thus, we also consider the following problem.

Definition 2 (Problem P2) Given a directed graph G = (V, E) and an integer L, find a minimum
cardinality set R CV such that all nodes of V' are covered by R.

3 Theoretical Results

We show that Problem P1 is MAX SNP-hard, which means that no PTAS exists unless P=NP. It
should be noted that MAX SNP-hardness also implies NP-hardness. For terminology on approxi-
mation algorithms, refer to [9].

Theorem 1 Problem P1 is MAX SNP-hard.



Proof. We show an L-reduction from the maximum coverage problem [9, 10], which is known to
be MAX SNP-hard [11], to Problem P1. The maximum coverage problem is defined as follows: Given
a family of sets S over U, and an integer &, find C C S of cardinality at most k which maximizes the
number of covered elements in U. From an instance I = (U = {uq, ..., um}, S = {s1, ..., 51}, k(< 1) )
of the maximum coverage problem, we construct an instance I’ = (G = (V, E), L, K) of P1 in the
following way (See Figure 2):

!
V ={ui,....,um, 81,-., 5}, E= U U {(ui,s5)}, L=1, K =k.

J=1u;€sj

It should be noted that |V| =m + [, |E| = Zé-:l |sj|. Thus, I' can be constructed in polynomial
time.

Let OPT(I) and OPT(I’) be optimal solutions of I and I’, respectively. Then, OPT(I') =
OPT(I) + k holds. Without loss of generality, we can assume that OPT(I) > k. Therefore,
OPT(I') < 20PT(I).

Given any solution R C V of I’ with cost (i.e., the number of covered nodes) ¢, we produce a
solution C of I in polynomial time by letting C = R — U, where R—U = {r|r € Rand r ¢ U}.
Then, |C| < |R| < k. Let ¢ be the cost (i.e., the number of covered elements) of C. Since ¢/ < c+k
holds,

OPT(I') — ¢ = OPT(I) + k — ¢ > OPT(I) — c.

Therefore, the above reduction is an L-reduction and thus Problem P1 is MAX SNP-hard. 0O
For Problem P2, we can show a much stronger hardness result as follows.

Theorem 2 There is no polynomial time algorithm for Problem P2 with approzimation ratio less
than % logn for any constant 0 < § < 1 unless NP C DTIM E(nPolvlog(n)y,

Proof. We prove the theorem by contradiction. Suppose that there is a polynomial time algo-
rithm for Problem P2 with approximation ratio less than %5 logn for some constant 0 < 4 < 1.

The set cover problem is defined as follows: Given a family of sets S over U, find a minimum
cardinality set C C S such that all elements of U are covered by UsiEC s;. From an instance
I={U={uy, ., um},S = {s1,..., 1}) of the set cover problem, we construct an instance I’ = (G =

(V, E), L) of P2 in the following way (See Figure 2):

{
V= {ul, veey U, 81, ...731780}, E = U {(Sj,So)} U U {(u,‘,Sj)}> 5 L= 1,
j=1

U; €85

where sg is a node not in S.

Let OPT(I) and OPT(I') be optimal solutions of I and I’, respectively. Then, OPT(I') =
OPT(I) + 1 holds.

Given any solution R C V of I’ with cost ¢’ (i.e., the number of selected nodes), we produce a
solution C of I in polynomial time by letting C = (R—U —{sg})U{s;| for u; € R—S—{so},u; € 3s;}.
Let c be the cost (i.e., the number of selected elements) of C. Since ¢ = |C] < |R| = ¢ holds,

¢ c d

OPT() ~ OPT(I) =1~ OPTI) =1’

For any constant 0 < 4§ < 1,

! !

¢ < ! ¢ <llo n
OPTI)—1-1-60PT(I) -4 ®




holds for sufficient large n = m + [ + 1. Therefore,

c 1 1
OPT(D) “1 8™
This contradicts to the fact that there is no polynomial time algorithm for the set cover problem
with approximation ratio less than  logn unless NP C DTIME(nPo%%9(")). Thus, the theorem is
proved. ]
We can also show positive results on approximation ratios using a well-known greedy algorithm
for the set cover [9]. For that purpose, we let U = V and S = {s,|s, is the set of nodes covered
by v € V}, and simply apply the greedy algorithm. Then, the following propositions are directly
obtained from the results on the greedy algorithm [9, 10, 11].

Proposition 1 P1I can be approzimated within o factor of e/(e — 1).

Proposition 2 P2 can be approximated within a factor of O(logn).

4 Integer Programming Formulation

In this section, we propose methods to solve Problem P1 and P2 using integer programming. In
the previous section, we showed that both Problem P1 and P2 are very hard to find optimal or
approximate solutions. However, efficient algorithms such as branch-and-bound methods have been
developed for integer programming, which is also NP-hard. Therefore, we formulate Problem P1
and P2 as integer programs, and call IP1 and IP2 respectively. In the next section, we show that
IP1 and IP2 are solved in practical time through computational experiments.

Problem P1 is formulated as follows.

n
(IP1) Maximize Zyi,
i=1
Subject to
Y < Z z; fori=1,.,n,
jesk

zn:wiSK»
i=1

xT; = {0,1},
v = {0,1},

where SiL is the set of nodes covering v;. Thus, for j € SiL , the length of a directed path from the
node v; to v; is less than or equal to L. x; = 1 if v; is selected as a reporter, otherwise x; = 0.
y; = 1 if v; is covered by some reporter, otherwise y; = 0. IP1 maximizes the number of covered
nodes using at most K reporter nodes.

Similarly, Problem P2 is formulated as follows.

n
(IP2) Minimize Yz,
=1

Subject to

Z zj>1 fori=1,.,n,
jesk
I, — {0,1}.

IP2 minimizes the number of reporters such that all nodes are covered. If the parameter K of
1P1 is greater than or equal to the optimal solution of IP2, the optimal solution of IP1 is always n.



Figure 3: Apoptosis pathway maps in a HeLa cell, which contain 132 proteins and 337 binomial
relations.

5 Computational Experiments

We applied the proposed methods to apoptosis pathway maps in a HeLa cell (See Figure 3). The
maps are composed of major signal pathways of apoptosis, which are initiated by TRAIL (tumour
necrosis factor apoptosis inducing ligand) ligation [12]. The maps were constructed by a commer-
cial software, MetaCore (GeneGo Corp., http://www.genego.com/metacore.php), in which findings
presented in peer-reviewed scientific publications were systematically encoded into an ontology by
content and modelling experts, and a molecular network of direct physical, transcriptional and en-
zymatic interactions was computed from this knowledge base. The maps thus constructed contain
132 proteins and 337 binomial relations.

All of these computational experiments were done on a PC with a Xeon 5160 3GHz CPU and 8GB
RAM running under the Linux (version 2.6.19) operating system. We used ILOG CPLEX (version
10.1, http://www.ilog.com/products/cplex/) for solving IP1 and IP2, and measured execution time
of the optimization function CPXmipopt() for mixed integer programming problems in CPLEX. We
must calculate SiL for all 7 in order to give integer programming problems to the function. However,
the preparation takes at most O(n?) time.

Table 1 shows the results on the optimal solution of IP1 and IP2 for each L(=1,...,6,132) and
K(=1,...,6). The solution of IP2 for each L gives the required number of nodes to cover all nodes
of V. For example, 42 reporters are required for L = 1, and 9 reporters for L = 6.

In the case that L is equal to the number of nodes n = 132, a node v; is always covered by
another v; if there is a directed path from v; to v;. Since 121 proteins among 132 proteins are
covered by protein BAK1 in the case of both L = 6 and L = 132, we can see that the distance
between almost all pairs of proteins in this network is at most 12. Thus, it is considered that the
network also has a small-world property [13]. It should be noted that most nodes (126 nodes) are
covered by 6 reporters in the case of L = 6. It is also observed that 104 nodes are covered by
6 reporters even in the case of L = 2. For L = 1,...,3, TP53, BCL2 and BAX were selected as
the most significant reporters respectively. These proteins are considered as hubs of the network
because they have large indegrees and outdegrees. On the other hand, BAKI is not considered as
a hub, but is as an accumulation node of the network, and is selected as a reporter. Moreover,
it seems that some of the selected proteins have significant biological meanings as follows. p53, a
tumour suppressor gene that responds to DNA-damage, is influential on TRAIL-induced apoptosis
by up-regulating TRAIL receptor {14]. Bcl-2 superfamily regulates cell death that is amplified via
the mitochondrial pathway [15]. BAX may be related with possible amplification of apoptosis via
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Table 1: The optimal solution of IP1 and IP2 for each L and K in apoptosis pathway maps, where
the numbers of covered nodes and the numbers of the selected reporters are shown for IP1 and IP2,
respectively.

L IP1 for each K IP2 | Reporter in K =1

1 2 3 4 5 6 (indegree/outdegree)
1] 20| 36| 47| 56| 62| 68| 42 TP53 (19/5)
2| 60| 76| 85| 92| 98|104| 22 BCL2 (17/4)
3| 88103 (110|116 (118 | 120 | 15 BAX (16/6)
4109|116 | 120 | 122 | 124 | 126 | 12 BAX (16/6)
51118 | 121 | 123 | 125 | 127 | 128 10 BAK1 (6/1)
6121|123 125 | 127|128 | 120 | 9 BAK1 (6/1)
132 | 121 | 123 | 125 | 127 | 128 | 129 9 BAK1 (6/1)

the intrinsic pathway in response to JNK. The caspase-9 may be essential for border-cell migration
in the Drosophila ovary [16], and the regulation of cell migration may also point to a roll in the
cleavage of several adhesion- and cell motility- related proteins during mammalian apoptosis [17].

On the other hand, our integer programming-based methods can always find optimal solutions
if any. For each case, the elapsed time of optimizing IP1 or IP2 was at most 0.023 seconds. These
results suggest that our methods are practical.

6 Concluding Remarks

We defined two problems P1 and P2 to allocate reporter genes that are effective for observing
behaviors of various biological networks. We showed hardness results on approximation of these
problems. On the other hand, by means of reduction to the set cover problem, we showed that P1
and P2 can be approximated within a factor of e/(e — 1) and O(logn), respectively.

We proposed integer programming-based methods IP1 and IP2 for solving practical instances of
P1 and P2, respectively. We applied them to apoptosis pathway maps, and found that such proteins
as TP53, BCL2 and BAX selected by our methods often correspond to hubs in the network. These
proteins are also considered to play important biological roles. The elapsed time of optimizing IP1
or IP2 was very short. It suggests that our methods are practical.

Though we considered directed and unweighted networks in this paper, IP1 and IP2 can be
modified for undirected and/or weighted networks. Furthermore, we can add various kinds of
constraints to IP1 and IP2 because these are based on integer programming. Such a flexibility
would be useful for modifying the proposed methods according to requirements from experimental
biologists.
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