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A robust measure of correlation between two genes on a microarray
using non-metric multidimensional scaling

Y-h. Taguchi
Dept. Phys., Chuo. Univ., tag@granular.com

It is a very important task to estimate correlation between gene expression profiles in
microarray. However, it is unavoidable for them to include many noises. Thus, it is a key
to reduce noises included into individual gene expression profile. Usually, this procedure
is based upon only each pair of gene expression profiles and mutual relationships among
more than two gene expression profiles are ignored. In this paper, we have demonstrated
that non-metric multidimensional scaling method can reduce both artificial noises in model
gene expression profiles and natural noises in cell division cycle microarray experiments.

1 Introduction

DNA microarrays are important technique to validate the amount of transcription of
individual gene. Especially, it is remarkable that it can measure all of genes at once. On
the other hand, it includes many noises mainly due to technical reasons. Since there are
also biological variations of samples, resulting measurement is unavoidably full of noises.
In addition to this, because of high cost of usage of microarray chips, it is hopeless to
get many replications enough to suppress noises by averaging. As a result, it is needed to
reduce noises within microarray measurement.

Especially, the noise-free estimation of correlation coefficients is very important. Re-
cently, Hardin et al[2] proposed to employ biweight correlation and reported that it can
achieve better performance than other measures for artificial /real data set. In this paper,
we propose to use non-metric multidimensional scaling method[1] (ntMDS) to reduce noises
which cannot be reduced by biweight correlation. Biweight correlation tries to minimize
“error” within a pair of gene expression profiles. However, each pair is not independent
from each other, since there are N(N — 1)/2 pairs if there are N gene expression profiles.
Thus, noise reduction is possible also by considering consistency between correlation co-
efficients. For example, for three gene expression profiles 4, j and k, if both of correlation
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coefficients of pairs (i,7) and (¢, %) are positive, correlation coefficients of the pair (j, k)
should be positive. Pairwise noise reduction like biweight correlation cannot consider this
information. nMDS is the method to get configuration where distances between objects
has the same rank order as those of pre-defined dissimilarity between objects. Thus, we
can reduce noise by using low dimensional configuration obtained by nMDS to compute
correlation coefficients since noise will be excluded as relationships which cannot be em-
bedded into low dimensions.

2 Materials and Methods

The data used in this paper are artificial one and real one. As an artificial data, we have
used simulated sinusoidal time sequential data,

si(t) = sin(2wt/T + 6;) (1)
ni(t) = e (2)
zi(t) = si(t) +ni(t) (3)

where t =1,...,7 and i = 1,...,N. é; € (0,2n] is random phase and ¢; € N(0,0). We
regard these as gene expression profile of ith gene at time ¢. Thus, genes are regarded to
have perioicity. d; is unique phase for each gene and € is noise at time t for gene 4. s;(t)
is signal with strict periodicity, n;{(t) is noise added to signal, and we observe x;. Since
(s2(t))y = 1/2 and (n2(t)); = o2, where

Zt Ce

(o= EL

noise dominates signal if o > 1/v/2. As a real data, we have employed Spellman’s data
set[4]. We have selected top most up regulated 1000 genes by using variance from all of «
factor-based synchronization data set.

We have applied nMDS to these two data sets. In this study, negative signed correlation
coefficient between gene expression profiles are used as dissimilarities.

3 Results

The purpose of noise reduction is to recover correlation coefficients pfj between s;(t)s from
the correlation coefficients pf; between z;(t)s,
= (i) = wi®))y) (i) — (w;(0),)),
i = )

V(@6 = w0, (60 - o))

t
where y = s or .

In order to see how well each methods recover correlation coefficients for noise-free ex-
pression profile s;(t) from those with noises z;(t), we have computed correlation coefficients
between distance df; obtained from p; and distances d;; obtained by several methods,

4) = ((dg; — (dy)) (dig = (dis)))
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Two dimensional embeddings by

dij V2= o) biweight nMDS PCA normalized PCA
p(ds;, dij)  0.653 £ 0.008 0.645 & 0.009 0.726 & 0.006 0.628 + 0.009  0.704 + 0.008
p(d;, dij) 1.0 0.975 + 0.002 0.805 + 0.006 0.698 £ 0.010  0.790 + 0.007

Table 1: Correlation coefficients p(dj;, d;;) between df; and d;; and correlation coefficients
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p(dfj,dij) between df; and d;;. In the left most column, we have shown p(dfj,dfj), too.

For d;j, we have employed biweight (,/2(1 — pfj)), distances in two dimensional embedded
space obtained by nMDS, PCA and normalized PCA.

where
() = S R
N(N -1)/2
dg; = \/2(1—pj;)

and N is number of objects (gene expression profiles). For biweight correlation pﬁ’j between

gene expression profiles ¢ and j, distance is defined as (/2(1 — pfj). Other candidate for
di; are those by nMDS, principal components analysis (PCA) and normalized PCA.

First of all, we have generated 5 (for nMDS) and 12 (for others) sets of z;(t)s, and
calculated mean p(d;;,d;;) within each set. The standard errors are computed from 5 or
12 mean values. In Table 1, we have shown the results for N = 100,7 = 10,0 = 1.0.
For comparison, in the first column of Table 1, we have shown the correlation coeflicients
between Pearson’s correlation coefficient p(df;,df;) ~ 0.653 between dj; and df;,. The
purpose is to get larger p(d;;, d;;) by using other methods. Clearly biweight correlation
cannot get larger p(df;, d;;) than p(dj;,df;). Biweight correlation is closer to df; than dj;
(see the lowest raw in Table 1 named as p(d];,d;;)). On the other hand, two dimensional
embedding by nMDS has larger p(df;, d;;) than p(dj;, df;). If we apply t-test between a set
of 12 mean values p(dj;, dﬁ-’j) by biweight correlation and a set of 5 mean values p(d;;, di;)
by nMDS, P-value is 2.4x107%. Normalized PCA, which is equivalent to metric classical
MDS with employing di; = 1/2(1 — p;;) as dissimilarities in this case but requires less
computational resources, is known to be as good as nMDS[5]. However, in this case,
nMDS is significantly better than normalized PCA, since P-value by t-test between these
two set is 0.04. Thus, non metricity is important in this case.

One may think that it is not fair since we have used the information that signal is
two dimensional (the degree of freedom is two). In order to demonstrate that solely the
information of dimension of signal does not help to extract noises, we have also done sim-
ple PCA. Clearly, two dimensional embedding of ordinary PCA cannot extract noise at
all (see Table 1). p(df;, d;;) by PCA is even smaller than p(dj;,df;). This is reasonable
since (s2(t)); ~ 0.5 while (n?(t)); ~ 1.0 for ¢ = 1.0. This means, noise is twice larger
than signals. This is demonstrated in Fig. 1 (a). Clearly noise n;(¢t) dominates signal
s;(t). Simple selection by PCA of two dimensions which have more variance than remain-
ing dimensions cannot reduce noises at all. If we see configuration of two dimensional

embedding, this tendency becomes clearer. In Figs. 2, we have compared two dimensional
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Figure 1: (a) Typical example of model gene expression profile. o: signal s;(t), +: noise
n;(t), A: signal + noise z;(t). T' = 10,0 = 1.0. (b) Typical comparison between ¢; and
polar angle estimated from nMDS embedding (Fig. 2 (c)).
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Figure 2: Configuration of embedding of z;(t) with (a) PCA, (b) normalized PCA, (c)
nMDS. For comparison, PCA results for s;(t) is also shown in Fig. (d).

embedding by PCA, normalized PCA, nMDS of z;(t) with each other. For comparison,
that of PCA for signal s;(t) is also shown. It is clear that nMDS outperforms PCA and
normalized PCA embedding. Especially, ¢; is reproduced very precisely. §;s correspond
to polar angles in Figs. 2. nMDS (and normalized PCA, not shown here) can reproduce
d; with the accuracy of 24° & 2° (Fig. 1(b)). Thus, main deviation between d;; and dj;
originates from deviation from a ring.

One may think that this example is too artificial and biased to be favorable to nMDS.
In order to see if there are real examples for which nMDS is useful, following Hardin et
al[2], we have tried to apply nMDS to gene expression profiles where the periodic nature
is expected. We have selected top 1000 genes having larger variance in o factor-based
synchronization experiments by Spellman. In Fig. 3(c), we have shown the results of
two dimensional embedding by nMDS. We can see some circular arrangement which can
never be extracted by other methods (see Figs. 3 (a) and (b)). Here we have employed
negative signed correlation coefficients between gene expression profiles as dissimilarity




e ‘e
~ * . ll%' : .'z':l .
57 AR s s
a . o _| mtegtry ) t ®
PRI IR e B
. ~

1
% -4 2 0 2 4 4 2 0 2 4 -004 002 000 002

(a) (b) ()

Figure 3: 2D embedding by (a) PCA (b) normalized PCA and (¢) nMDS for Spellman’s
data set. Top most 1000 genes with regard to variance are consider for o factor-based
synchronization experiments.

and embedded them into two dimensional space. The biclogical significance of circular
arrangement obtained by nMDS in this data set has already been reported partially[3]. In
Fig. 4(a), we have compared phase obtained by sinusoidal fittings (x;(¢t) sin(2xt/T')); and
{wi(t) cos(2nt/T))+ and polar angle estimated by nMDS embedding (Fig. 3(c)). It is clear
that nMDS successfully reproduce phases. While for sinusoidal fittings we need the infor-
mation of period (T = 66min.[4]), nMDS does not require this information. Thus, nMDS
is more unsupervised. The fact that nMDS can reproduce phases in unsupervised manner
has already reported for the fission yeast[6]. One may think that Fourier transformation
also can extract the correct period, thus we can get phase by using period with the largest
Fourier transformation spectrum. However, period extracted by Fourier analysis must be
T'/N, where T is the length of time sequence and N = 1,2,...,7"/2. Generally, there are
no reasons that 7"/T is integer, thus nMDS is more suitable method to extract phases at
least when 7”/T is not integer.

Of course, the simple appearance of ring in the embedded space by nMDS does not
always mean biologically significant structure. For example, it is pointed out that a set
of random walks analyzed by nMDS exhibits ring, too[7]. However, if the ring is outcome
of random walk, period 7' must be equal to 7”. In this case, T' = 66min. while T/ = 119.
Thus the appearance of ring cannot be explained as being accidental. Moreover, the fact
that phase obtained by assuming 7' = 66 min. agree with phase obtained by nMDS shows
~ that the ring has surely biological base, since 7' is really the period of cell division cycle.

Then in order to compare distance obtained by nMDS and that by correlation coeffi-
cients, we have shown the comparison between ascending rank order of distance d;; between

gene expression profiles in the embedded space by nMDS and the distance /2(1 — p;;) by
correlation coefficient p;; between gene expression profiles 7 and j (Fig. 4(b)). Although
there are globally well correlation between two rank orders, there are some pairs of gene

expression profiles for which two ranks differ. In Fig. 5, we have shown scatter plot of
pairs of gene expression profiles which are located at upper left corners in Fig. 4. This
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Figure 4: (a) Comparison between phase by sinusoidal fitting (horizontal axis) and polar
angle (vertical axis) estimated by nMDS embedding (Fig. 3(c)). Vertical axis is shifted
such that points are located at diagonal region. (b) Scatter plot of rank order of all
pairwise distances of the 1000 most variable genes in the yeast data. Horizontal axis is
rank order of {/2(1 — p;;) where p;; is the correlation coefficient between ith and jth gene
expression profile. Vertical axis is the rank order of distance d;; obtained by nMDS (Fig.
3(c)). The blackest squares represent 6800 pairs of genes. The lightest squares represents
two pair of genes. Grey scale is proportional to log transformed number of pairs. Both
horizontal and vertical axes are normalized such that the range spans from 0 to 1 and
takes the smallest values of distances at bottom left corner. This means rank order is
ascending.
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Figure 5: Each points represent gene expression profiles for specified genes. d;; by nMDS

shows larger values and distance
cients p;; takes smaller values for these group of 6 pairs.

2(1 — p;;) computed from Pearson’s correlation coeffi-

means, for these pairs, distance by Pearson correlation coefficient is smaller while that by
nMDS is larger. In other words, Pearson correlation coefficient says that these two are
similar while nMDS result says that they are not. For most graphs in Figs. 5, there are
outliers and they essential make each of pair gene expression profile look similar. Although
some of graphs lack outliers, this is due to missing values, since upper/lower limits of axes
are decided by considering all observations, even if points are not plotted due to lack of
one of a pair of observations. For example, for the pair of YOL012C and YKR004C (top
right corner), although upper limit of horizontal axis is 2.5, there are no points plotted
with this value. This means that YKR004C has gene expression as large as 2.5 although
corresponding profile of YOL012C is missing. Thus, TKR004C has outliers even if it is
not plotted. These outliers cause larger correlation coefficient (i.e., smaller distance). If
we exclude outliers, this similarity is doubtful. Thus, distance by nMDS is more trusted
than that by Person correlation coefficients. Hardin et al[2] have reported that biweight
correlation has similar function, but biweight transformation T'(X) for X,

1. m = the median absolute value of X
2. cutoff =6 xm
3.

T(X) = (1- (X/cutoff)?)?
T(X) = 0

,if abs(X) <cutoff
,if abs(X) >cutoff

explicitly intends to exclude outliers. On the other hand, nMDS does not aim such an
specific purpose, thus nMDS is regarded as having the power that automatically reduce



noises by outliers without any supervision. This shows that importance to consider mutual
relationship among more than two gene expression profiles.

4 Conclusion

In this paper, we have proposed usage of nMDS for noise reduction procedure of microarray
experiments. For model (simulated) gene expression profiles, nMDS outperform biweight
correlation which is reported to outperform other methods[2]. nMDS turns out to have
ability of noise reduction for real gene expression profile, too. Without supervision, nMDS
can exclude similarity caused accidentally by outliers, although biweight which is designed
for this purpose have the same ability.
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