FEFEN SR
IPSJ SIG Technical Report

W

2007—MPS—67
2007—BIO—11
2007,712,720

NetMCQ : A Distributed Exact Maximum Clique Solver

SuoHEI URABE!! and ETsui1 TomrTall

Abstract. We present NetMCQ, a distributed, exact and efficient branch-and bound algo-
rithm for finding a maximum clique in an arbitrary graph based on the algorithm MCQ.
Computational experiments are carried out to demonstrate its efficacy.

1. Introduction

A clique is an undirected graph whose vertices
are pairwise adjacent. The Mazimum Cligue
Problem on an undirected graph G = (V, E)
asks for a maximum subgraph of G which itself
is a clique. Despite of its NP-Hardness, this
problem has a variety of applications?. Ef-
ficient algorithms to solve it gains significant
impact on both theoretical and practical fields,
thus it has been studied by many researchers.

In this note we present a distributed algo-
rithm to exactly solve the maximum clique
problem, called NetMCQ. This algorithm is a
distributed application for our preceding algo-
rithm MCQ® and has quite similar characteris-
tics.

2. Basic Algorithm

Let us consider an undirected graph G and
a procedure EXPAND. EXPAND calculates
the size of a maximum clique in a particular
subgraph. Using EXPAND the maximum of
the whole given graph G can be computed as
EXPAND(G, V,0).

2.1 EXPAND

EXPAND is a recursive procedure which sat-
isfies the following characteristics.

Input G = (V,E), a subset of its vertices
R C V, and an integer q.

Output Sum of ¢ and the size of the maxi-
mum clique in R-induced subgraph under
G.

Our algorithm implicitly maintains a subset
of G, which is a clique, and explicitly R, the
candidate of vertices to add to the target clique.
We select a certain vertex p from R as a clique

11 Department of Information and Communica-
tion Engineering, The University of Electro-
Communications, Tokyo 182-8585, Japan.
E-mail:{shyouhei, tomita}@ice.uec.ac. jp

procedure EXPAND(G, R, q)

begin
ifg> |Qmam|
then
update Qmaz;
broadcast g
fi;
ifR#AD
then
NUMBER-SORT(R);
p = max R;
if ¢+ No(p) > |Qmaa|
then
R, = RNT (p);
R, = R {p};
concurrently execute following:
EXPAND(G, Ry, g +1);
EXPAND(G, R,, q)
fi
fi
end.

Fig.1 Procedure EXPAND

component, then compute R, = RNT (p) and
R, = R — {p} as the new candidate sets of
the vertices, where T (p) = {qg € V | (p,q) € E}
is the neighbor of p. We apply recursively
EXPAND to both R, and R, and return
whichever grater as the answer of this proce-
dure. When R = 0 is reached, g is the size of
the implicitly maintained maximal clique, so we
take this as the return value.

3. Pruning

In order to avoid unnecessary searching, MCQ
equips approximate coloring algorithm NUM-
BER_SORT? to prune the search tree. With
this a positive integer or color No(p) is assigned
for each p € R, and R gets ordered along with

®
®

that number. Assume we maintain global vari-
able Qaq to hold the largest clique ever found
on the graph, following condition

g+ max{No(p) | p € R} < |Qmaz| (1)
indicates that this R does not include any
cliques larger than Q42 Such R can be dis-
regarded.

When selecting a vertex p to compute R, and
R, we chose a vertex such that the color of
that vertex is maximum in the subgraph R. As
R is ordered, doing so is a simple subtraction of
the largest entry of R, which is typically O(1).

4. Concurrent Execution

In the basic algorithm above, every call of
EXPAND procedure can run concurrently. We
can distribute those processes over the network.
Simple approach was taken here:

(1) Every network node has its state, namely
“free” and “busy”. Free state indicates
that node is not currently assigned to a
specific subproblem, while busy indicates
the node is currently executing EXPAND
procedure on some subproblem.

(2) If there is a network node which is in free
state, then send subproblem R, (in the
list above) to that node, and the original
node behaves as if R, = 0 (i.e. ignore
sent subproblem). The node which was
given a subproblem then set its state to
busy state, and execute EXPAND proce-
dure over the given subproblem.

(3) Otherwise EXPAND over R, is exe-
cuted in the same network node as the
EXPAND-ing node for R,.

(4) When a node in busy state reaches to its
end of execution by R = 0, It broadcasts
its answer (i.e. the clique size found so
far), then turning itself into free state,
waits for another network nodes to send
next subproblem.

4.1 Criteria

Above approach works properly. But in our
earlier experiments, running distributed algo-
rithm with the schema turned out to be much
slower than MCQ. We observed that a network
transfer between two nodes is much expensive
compared to an in-node execution of EXPAND.
So some heuristics are taken.

We will not distribute a subproblem unless all
of the following conditions are met:

(1) Let R be a subproblem we are consider-
ing, p(G) be the edge density of G, and
Q ez be a maximum clique found so far.
Then, the following condition
Ry +q > Do)
must be met to distribute R.
(2) Let R be a subproblem we are consider-
ing. Then, the following condition
IR| > |Qmax| + 100 &)
must be met to distribute R.

As the search progress, given a vertex p € Ry,
the size of R, = RN T (p) is roughly expected
to be somewhat proportional to the product of
the edge density of the graph and the size of R.

|Rp| = p(G) |R] (4)

So the first condition roughly means that the
EXPAND invocation we are considering is ex-
pected to recur more than 3 times. This criteria
is expected to prevent distributing of small sub-
problems which appear near the leaf of search
tree.

Second condition is simply expected to pre-
vent distributing of too small subproblem.

We call the basic algorithm, pruning algo-
rithm NUMBER_SORT, and the bounding cri-
teria above together a distributed NetMCQ al-
gorithm.

5. Computational Experiments

We implemented the algorithm NetMCQ in
the C language and carried out computational
experiments. Though it is not trivial to say
when an execution of a NetMCQ ended, because
a node is in state free does not mean that an
exactly maximum clique was found. To ensure
the exact answer we have to wait all the engaged
nodes to be in the state free. When all nodes
are in free state, no EXPAND instances are run-
ning, so no cliques can be found any more.

Our environment is Intel Pentium 4 proces-
sor 3.06 GHz, with 1024 MiB main memory,
Linux Kernel 2.4.31 with GNU libc 2.3.3, GNU
C Compiler version 4.1.0. We used 6 comput-
ers with all exactly the same CPU, Memory, OS
and Compiler.

5.1 Results

Table 1 shows the result for random graphs
of n vertices with edge density p. The size
of the maximum clique is w and we got cor-

— Tablel E

n p w | 1 node time[sec] 6 nodes time [sec] speedup ratio
200 0.7997 25 10.66 9.43 1.13
200 0.9022 41 909.03 221.32 4.11
200 0.9534 63 1,563.99 230.28 6.86
300 07006 20 20.86 18.41 1.13
300 0.8001 29 1,393.37 318.10 4.38
400 0.70106 22 309.08 140.04 2.20
400 0.8004 30 74,527.38 15,974.63 4.66
500 0.5996 17 76.06 50.22 1.51
500 0.6994 23 3,166.92 1,066.39 2.97
600 0.5989 18 256.12 202.80 1.26
600 0.6990 23 21,747.93 10, 095.03 2.15
700 0.5995 18 938.56 768.62 1.22
800 0.5996 18 3,697.59 1,974.13 1.87
900 04993 15 233.57 171.68 1.36
900 0.5998 19 8,389.63 5,490.67 1.53

1,000 0.4999 15 503.55 389.73 1.29

rect results for all instances. In this table in-
stances of higher densities are faster than those
of lower ones, indicating the distribution crite-
ria are more effective for dense graphs. Espe-
cially in the instance of n=200, p=0.9534 the
speedup ratio is over 6.0. This happens when
the largest clique was found by one of the run-
ning nodes while other nodes are finding much
smaller cliques. In this case the found largest
clique size is broadcasted to all nodes and that
value is used for branch pruning as described
above, resulting a huge speedup compared to
the serial execution.

Table 2 shows the result for benchmark
graphs provided in DIMACS® challenges.
Other than this table, we observed that
NetMCQ is slower than MCQ for the instances
of roughly < 100 sec execution time. For those
graphs distribution overheads are the dominat-
ing part of the execution. As the 6-node execu-
tion is still fast enough, we are not nervous for
those results. Also for the instances of MANN
series, which are of very high density and takes
a long time, NetMCQ is slower than MCQ. This
is because all the subproblems distributed from
the node initially started execution are large
enough to satisfy the criteria, but at the same
time they are small enough to be pruned by
the coloring. All the distributed subproblems
are pruned hereon thus distribution overheads
take effect while no branches are executed in
parallel.

NetMCQ is faster on other instances shown
in Table 2. Results above indicates NetMCQis
effective enough.

6. Conclusion

We present NetMCQ, a distributed dialect
of algorithm MCQ, and carried out computa-
tional experiments on it. This algorithm has
quite similar characteristics from MCQ, that is,
if MCQ runs fast for a problem NetMCQ also
runs fast on it. Moreover it runs faster where
MCQ took long time to solve. The distribution
schema shown above is rather general and can
be applied to other algorithms, such as MCR2)
and others?

However it is obvious from computer experi-
ments that NetMCQ has some instability for the
input graphs. We assume this is because our
distribution criteria do not always fit to the ac-
tual branch-and-bound situation. A more strict
estimation of branch count should result in a
more effective criterion.

References

1) Bomze, I.M., Budinich, M., Pardalos, P.M.
and Pelillo, M.: The maximum clique problem,
Handbook of Combinatorial Optimization (Du,
D.Z. and Pardalos, P.M., eds.), Vol.4, Kluwer
Academic Publishers, Boston, MA (1999).

2) Kameda, T. and Tomita, E.: An efficient
branch-and-bound algorithm for finding a max-
imum clique with computational experiments,
Journal of Global Optimization, Vol.37, pp.95—
111 (2007).

3) Johnson, D.S. and Trick, M.A.(eds.): Cligues,
Coloring, and Satisfiability, DIMACS Series in
Discrete Mathematics and Theoretical Com-
puter Science, Vol.26, the American Mathe-
matical Society (1996).

Table 2 F N

instance

n P w [1 node time[sec] 6 nodes time [sec] speedup ratio
brock400_1 400 0.7497 27 1,715.23 751.92 2.28
brock400_2 400 0.7492 29 700.64 359.18 1.95
brock400.3 400 0.7478 31 1,516.08 491.59 3.08
brock400_4 400 0.7489 33 675.29 279.39 2.42

MANN_a45 1,035 0.9964 345 4,596.47 6,338.47 0.725
p-hat300-3 300 0.7469 36 16.78 16.32 1.03
p-hat500-3 500 0.7519 50 3,000.39 1,855.10 1.61
p-hat700-2 700 0.4975 44 50.71 45.39 1.12
p-hat1000-2 1,000 0.4901 46 2,874.45 2,528.87 1.14
sanr200.0.9 200 0.8976 42 351.19 76.51 4.59
sanr400.0.7 400 0.7001 21 373.79 164.74 2.27

4) Sutani, Y., Higashi, T., Tomita, E., Taka-
hashi, S. and Nakatani, H.: A faster branch-
and-bound algorithm for finding a maximum
clique, Technical Report of IPSJ SIG, No.2006—

AL-108, pp.79-86 (2006).

73‘7

