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Flexible Protein Alignment of 3D-Structures
Allowing Dynamic Transformation
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In these days attention is focused on the functions of proteins and it is known that when
the 3D-structures of proteins are similar the functions of them are often similar. Thus to
find the similarity of protein structures is a very important problem. However, most parts of
proteins have been treated as rigid ones in the previous papers, though the protein knocks
against various molecules in the solvent and is transformed. In this paper, we focus on the
local structures of proteins, consist of a sequence of 4 coadjacent axino acids. We investigated
the features of Local Structures on two similar proteins, and on two proteins that have no
relationship. Then by using the features and the probabilistic argument, we defined a new
Similarity Score (59) between two proteins that can be calculated in the time proportional
to the size of the proteins. We show that we can get almost the same results in much shorter
time compared to the results that uses RMSDh. We also show SS can be used to point cut
the existence of hinge regions with high probability. Our method is several hundreds times
faster than existing methods and by the fact we can make some groups of similar proteins
allowing some hinge regions, or to reduce the candidates of similar protein pairs before using

some slow algorithms.

1. Introduction

1.1 Background

Now analysis of genes of living things has ad-
vanced. Base sequences of human genome is
determined in 20032, mouse genome in 20029,
rice plant in 200410, etc. Base sequences of
many other animals or plants are also being de-
termined. Now analysis of genes is on the way
but not only genes but also proteins are play-
ing a great part of living things. Protein has
lots of functions, not just the material that our
body consists of. Sometimes proteins become
the cause of diseases, then to know the aspects
of proteins is of help to prevent those diseases.
Proteins also control genes by binding to a spe-
cific region, then to know the functions of pro-
teins is essential to know the function of genes,
that can also be used to prevent diseases or to
give a genetic diagnosis. Thus researches are
on the way to reveal the functions of proteins.
It is well known that when the protein struc-
tures look alike, the functions of the proteins
are often similar. Then it is very basic and
an important problem to calculate the degree
of similarity of protein structures from given
3D-structures. Because the number of proteins
whose 3D-structures are known is rapidly in-
creasing and thought to keep exponential grow
for many years, not only a slow and accurate
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method but also a fast method is in need.

Because of the background, many kind of
methods have been suggested to compare the
protein 3D-structures®'3:16-19)  However,
most parts of the protein have been treated as
rigid ones in the existing technique proposed by
present though the protein knocks against var-
ious molecules in the solvent, vibrates, and is
transformed. So, in this paper, we aim to find
out pairs of similar protein pairs among pro-
teins on condition that the structures of two
proteins are given and slight transformation of
those proteins are allowed. To find similar pro-
teins in short time, we also aim to create a very
fast method for calculation with high reliability.

1.2 Outline

Every research on the protein alignment us-
ing RMSD was using somehow rigid regions of
proteins, and transformations of proteins were
treated as special incidents. But proteins are.
vibrating and changing its shape all the time.
Moreover the coordinates given by X-ray crys-
tallography or by NMR have some errors. This
assuming that proteins are rigid is not so much
a mistake in most cases, but it is not desir-
able when some hidden similarity exists be-
tween proteins.

In this paper, we first investigate the struc-
tures of proteins in PDB%. In January 2008,
there exists more than 48 000 proteins hav-
ing the coordinates of every atoms in proteins.
Moreover, even if the proteins are the same,



the protein can take some different structures
depending on the environment. In such cases,
PDB has more than one set of coordinates of
the atoms in proteins. There are so many data,
thus some error in coordinates in the database
can be ignored statistically. Then by using the
knowledge we get, we define the new method
to calculate the similarity score. By using the
method, we show how to find similar proteins.

2. Related Works

2.1 Protein Comparison

RMSD RMSD (Root Mean Square Devia-
tion)® is the most popular measure of the
distance between two proteins. The value
can be calculated on condition the corre-
spondences of the location of amino acids
in two proteins are known a priori. Both
proteins can rotate or move in 3D space
without any constraint. We call the ma-
trix which declares the rotation and paral-
lel shift 7. When we choose T, then every
coordinates a; in « are transformed to of.
The distance of two corresponding atoms
are T'o; — 3;, then the RMSD value can be
represented as\/ L5 (Toy — B;)?, where
1 is the number of pairs of amino acids.
The original RMSD has an advantage that
there exists an O(n) algorithm to calculate
the RMSD value between the sequences
with n points, so it is useful when the cal-
culation time is the main concern.

There are many researches using RMSD
value, for example WHAT-IF, FlexProt*®)
and RMSDh(n)'®.

Geometric Techniques There are also other
methods to compare other features to
find similar regions using geometric tech-
niques!®-1) DALI'® use the three
dimensional coordinates of each protein
to calculate residue-residue (C alpha-C al-
pha) distance matrices. They decompose
the distance matrices and combine them
into consistent sets of pairs. Secondary
structure elements (SSEs) of proteins are
also sometimes used because the secondary
structures are thought to be saved even if
the 3D-structure of a protein changes dy-
namically.

Local Structures There are some papers fo-
cusing on the local area of proteins!®»20),
They use angles to define the structures.
For example, DRAGON creates virtual

protein structures randomly that is simi-
lar to proteins in the real world. The pro-
gram is focusing on the local structure of a
protein, consists of 4C, atoms. It provides
the protein structure satisfying some condi-
tions that often occur in protein structures.
TALI'® also uses the features of rotations
that are the same with DRAGON. TALI
calculats the distance between sequences
by the difference of angles representing lo-
cal structures, then calculats the alignment
score by using gap penalties.

3. Preliminaries

3.1 Protein Data Bank

The fundamental three-dimensional structure
description consists of the specification of the
coordinates of each atom, as given in the
PDB¥, and the data is available on the Inter-
net. We can use the data to compare proteins.

3.2 Protein Representation

The location of C, atoms are often used as
location of the amino acids, because of some
reasons; (1) every amino acid has a Cy, in it, (2)
C,, atoms can be regarded as a backbone of the
protein structure, because the C, atoms is con-
nected to a carboxyl group and an amino group.
Because it is almost impossible to treat all the
atoms in a given protein, we usually use C,
atom as a representative of an amino acid and
explain the protein structures by using them.
Thus, a protein can be represented by an array,
which contains coordinates of C, atoms.

3.3 Local Structure of a Protein

Let P, be the coordinate of the C, atom
of nth amino acid in a protein. In our pa-
per, we pay attention to the local structures
of the bonds of amino acids, so in each calcula-
tion we just use Local Structures as a target and
do not pay attention to the global structure of
proteins. A Local Structure of a protein P con-
sists of the coordinates of 4 Co-adjacent amino
acids, and the location of those amino acids are
explained as F;, Piy1, P40 and Pis.

3.4 Features of a Local Structure

We define a simple function to make it eas-
ier to understand some expressions as follows.
Distance between two coadjacent C, atoms are
the features of Local Structures, but we find
that the distances are always almost the same
value. So in this paper we treat the distances
as a constant value and do not think them as
features of a Local Structure.
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In this paper, we just apply the angle with coad-
jacent C, atoms, so we redefine the value in
another way, as 0p; = angle(P;, Piy1, Pito).
But to define the whole structure of a Local
Structure consists of F;, P11, Piyo and Piis,
function fp; is not enough. We need another
parameter ¢P,i = SkEHJ(H,Pi+1,Pi+2,RL‘+3),
which can be obtained by the following steps.
¢ Rotate a rigid Local Structure to satisfy the
following conditions; (1) P, P;. o is paral-
lel to z-axis. (2)P; P/, is on the zz-plane.
We define the 3 X 3 rotation matrix that
satisfies the condition as ¥p; and P/ 1 be
ZpiPivr(k=0,1,2).

e Get the projected coordinates of P/, (k=
0,1,2,3) on zz-plane. Call the projected
coordinates as Py, . (k = 0,1,2,3). Notice
that the coordinates of P}, P\, will be
the same location.

e We define angle(P{, P/\,, P\ 3) as ¢p; =
skew(Pi, .Pi_)_]_, Pi+2, Pi+3) that deﬁnes the
rotation around the axis P;11FP;19.

Now we have obtained every parameter to de-
fine the Local Structure listed below. In the
following chapters, we will use the parameters
as features of a Local Structure.

. 0i+l)c = angle{Pii, Pivr+1, Pivki2) (kK =

0,1).
e ¢; = skew(P;, Piy1, Piyo, Piys).

Fig.1 Definition of features

Figure 1 shows the definition of ¢ and ¢ vi-
sually. The three images in the figure show the
same rigid local structure consists of 4 atoms
from different point of view. From 8 and ¢ and
the distance between atoms, we can reconstruct
the whole Local Structure, so we call these val-
ues as features of a Local Structure.

4. Similarity of Two Proteins

In this chapter, we focus on the Local Struc-
tures of proteins. Here we define a Local Struc-
ture as a region consists of four contiguous C,
atoms in a protein. We first examine every fea-
ture that a Local Structure has, to know which

kind of features are suitable for representing the
structure. After that, we define the Similarity
Score by using the features and probablistic ar-
guments.

4.1 Analysis of Proteins

To find similar proteins, we need to know
which type of transformation is conceivable and
which type of transformation is thought to be
impossgible. Then we first investigated some fea-
tures of proteins. Let the protein to be investi-
gated be P, we drew a histogram of the follow-
ing features; (1) Distribution of 8p; (2) Distri-
bution of ¢p;.
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Fig.2 Distribution of 6p; and ¢p;

We also drew the distribution of 6p; and ¢p;
in Figure 2. In the figure, we can see that the
two variables have some relationships. There
are two peaks in the graph, one is around 0p; =
90-degree, ¢p; = 50-degree, and the other is
around @p; = 120-degree, ¢p; = —165-degree.
By the figure, we can say that protein structures
tend to have this two patterns.

4.2 Analysis of Isomeric Protein Pairs

To examine the appropriate criteria of the
similarity allowing transformation, we investi-
gated some isomeric protein pairs on some fea-
tures; (1) distribution of 8p; — 8 ;, (2) distri-
bution of ¢p; — ¢pg ;. P and @ are the pair of
proteins and each of P; and @); are the corre-
sponding amino acids.

In the former figures, it is shown that pro-
teins tend to have two particular Local Struc-
tures. But Figure 3 shows that in most cases
the protein structure keeps its Local Structure
and rarely have the other structure. It is a re-
markable result.

4.3 Analysis of Random Protein Pairs

In this section, we investigated the features
between two Local Structures which are ran-
domly selected.
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Figure 4 is a 2-dimensional graph of 0p; —
0o, and ¢p; — dq,;, on condition P and @ are
randomly selected. Compared to Figure 3, this
graph has wide distribution and we can find two
peaks in the graph though Figure 3 only has a
single peak. Note that the four peaks out of
five we can find in the figure are caused by the
same reason. Because the top of the graph and
the bottom of the graph are showing the same
value, we can find there are only three peaks
in the graph. Moreover, the graph should be
point-symmetric. Because of those reasons, the
number of peaks having some meaning is 2. The
two peaks can be explained by the existence of
two peaks in Figure 2.

4.4 Similarity Score

By using the facts shown in the last two
sections, we design a similarity score between
two different protein structures. According to
Bayes’ theorem, we can obtain the posterior
probability that the given two Local Structures
are similar by using the histograms.

4.4.1 Bayesian Decision Theory

Bayesian decision theory is a fundamental
statistical approach to the problem of pattern
classification. We here note that the proba-

bility of finding a pattern that is in category
w; and has feature value X can be expressed
in two ways: P(w;,x) = Plux)P(x) =
P(x|w;}P(w;). Arrange the equation and we
get a formula that is called Bayes formula:
oy P(x|wi) P(ws)
Plws|x) = P(x)

4.4.2 Similarity Probability

In the last section we detect that 8 and ¢
are likely to be similar when two proteins are
similar. So we use two features df = 0p; — b¢ ;
and d¢ = ¢p;—Pg ; as afeature vector x. Then
we get the expression described below.

_ P(d@, d¢»[wz) . P(wz)

When we use the theorem to compare two
proteins, the proteins we are looking at never
change its structures, so P(w;) is a constant
value. Thus on condition that x is known, the
probability that the given two proteins are simi-
lar or not is proportional to EJ(DL({::)YQ' Because we
do not know the exact value of P(w;) we cannot
calculate the exact probability of P(w;|x) but
we can compare the ratio of two probabilities.

By using the histograms we got in the last
section, we can estimate the value of P(x]w;)
and P(x). Then we can get the approximate
value of P(w;|x) for every 7 and x. Note that
our definition of P(w;|x) is based on the ob-
served structures of the known proteins. Be-
cause of the fact, even if a feature vector was not
observed, it does not directly mean such trans-
formation never occurs between similar pro-
teins. Though on such situations, we can say
the kind of transformations rarely occurs. So
we define the values called Similarity Probabil-
ity (SP), which is the probability mainly based
on P(w;|x). SP(df,d¢) represents the Similar-
ity Probability on condition that the difference
of angle is d6¢ and the difference of skew is d¢.

SP(d8,d¢) = maz(P(wsm|dl, dp), €) (2)

€ represents the probability that wg, oc-
curs even if the feature vector was not ob-
served in the experiment, satisfying 0 < ¢ <
P(wsim|d6, d6) (V(d8, dg), Plweira|d6, d) > 0).
In this paper we just multiply SP, so we de-
fine SS as the logarithmic value of Similar-
ity Probability that we call Similarity Score;
S55(db,d¢) = log SP(d, ds).

Figure 5 shows the similarity score at every
dé and d¢.

4.5 Similarity Score of a Protein Pair

We describe our definition of similarity be-




Fig. 5 Similarity Score at every type of
transformations

tween two proteins on condition that features of
every Local Structures are independent of those
of other Local Structures. This assumption is
probably not true, but later we will compare
the result we get from our method to the re-
sults from existing methods, then describe the
assumption does not affect the result. By us-
ing the assumption, we define the average Sim-
ilarity Score between two proteins, that can be
easily calculated on condition that the corre-
sponding Local Structures are known a priori.

When we call the value as SS(P,Q) that
means average Similarity Score of Proteins,
the value is: SS(P,Q) = logPlwsm) +
=L S 88(0pk — Ok, dPk — Pouk). The
definition enables us to compare the Similar-
ity Scores between multiple protein pairs that
have different size.

The value depends on the prior probability
P(wsim)- In usual we cannot get the exact value
of P(wgim), so we treat the value as a constant
one, and when comparing the Scores we just
use the term -n,_lAS— Z;f SS(ap,k — GQ‘,C,@% —
¢o.1). We cannot get the exact probability by
the method, though the value can be used to
compare Similarity Scores.

4.5.1 Expected Similarity Score be-

tween Two Proteins

To give a rough standard to SS, we calcu-
lated the expected value and the variance of §§
between two proteins on two conditions, one is
the two proteins are similar, and the other is
the two proteins has no relationship.

We calculated the value from the figures
shown above by using the hypothesis that every
Local Structures are independent of the other
Local Structures, and get some values described
below.

e When two proteins are similar, the ex-

pected value of SS at a Local Structure is
—2.14 and the variance is 1.56.

e When two proteins are not similar, the ex-
pected value of 8§ at a Local Structure is
—5.27 and the variance is 1.93.

The values are calculated at every Local
Structure, so SS of two proteins has different
distribution. §§of a pair of proteins is the mean
of every pair of Local Structures, so the mean
of SS is the same as that of each Local Struc-
ture. Thus when two proteins are similar; the
expected value of SSis —2.14 and when they are
not similar, the expected value is —5.27. But
the variance of mean differs according to the
number of the pair of Local Structures. When
there is £ times more pair of Local Structures,
the standard variation becomes % times ac-
cording to the statistical theory. ﬁ;r example,
when there is 100 Local Structures, the stan-
dard variation becomes —110—~ times, that is 0.1
times. Thus the case with comparing two struc-
tures with length 103, the standard variance of
5SS between two proteins is 0.156 when two pro-
teins are similar and is 0.193 when no prior in-
formation is given about the two proteins.

5. Experiments

‘We implemented our method to show that the
method can be used as an alternative method of
former methods. We used the machine with the
following specifications. CPU: AMD AthlonX2
BE-2350, Memory: 4.0GB and HDD: 500GB.

5.1 Calculation Time

We first comapred the time for calculation.
‘When measureing the time for computing, we
exclude the time for reading the pdb format file,
because the size of a file is independent of the
size of a protein.
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Fig. 6 Time for calculating SS

Figure 5.1 shows the time for calculating SS
between two proteins. Figure 5.1 shows the
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Fig. 7 Time for calculating RMSDh(3)

time for calculating the RMSDh(3) value. The
time also exclude the time for reading a file.
Figure 5.1 consumes more than 1 second when
the size of proteins is large because the time
complexity of the algorithm is O(n?). Com-
pared to the figure, our result shown in Figure
5.1 requires very short time and every calcula-
tion is done within several milliseconds. We can
also say that the calculation time is linear to the
size of proteins. The fact means our program
is of great use especially when long proteins are
compared.

5.2 Accuracy

Our method is fast but we did not show that
the result we get from our algorithm can be
used as the measure of similarity, because of
the assumption that there is no relationship be-
tween two coadjacent Local Structures. In this
section, we compare 5SS with RMSDh that is
defined in the former paper, and discuss the re-
lationship between these two values.

‘The RMSDHI3) valoulated by an existing mothod
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Fig.8 The relationship between SS and the score
calculated by a former algorithm

Figure 8 shows the relationship between SS
and the RMSDh(3) value. We plotted just
20000 points in the figure to show the relation-
ship because calculating tens of thousands of
RMSD(3) values takes very long time. We did
not show the comparing method of two proteins

allowing gaps yet, so the comparison was done
without thinking about the existence of gaps.
In the experiment, the size of proteins is fixed to
100, because the variance of RMSD or RMSDh
values differs depending on the size of proteins.

In the figure, we can find out a big cluster on
the left side, and a small cluster or a line on the
right side. The center of the large cluster seems
to be between —5.0 < 88 < —5.5. In the last
chapter, we showed that the expected value of
SS between two non-similar proteins is —5.27.
From the fact, the large cluster is thought to be
the groups showing non-similar protein pairs by
our method. The fact that the RMSD values of
points in the cluster is larger than the values
found in the smaller cluster supports our con-
cept that SS can be used to distinguish similar
protein pairs from non-similar protein pairs.

On the bottom of the figure, there is a long
and thin cluster. Every member of the cluster
has relatively low RMSDh value and relatively
high SS, compared to the elements in the large
cluster.

From the figure, it seems that we can figure
out a given pair of proteins belongs to which
cluster by SS.

5.2.1 Proper Threshold for Making a

Decision

We give the statistically trustable indicator to
the threshold of §S to separate similar protein
pairs from non-similar protein pairs. We want
to know whether given two proteins are similar
of not only from SS.

When we make a decision, there occur 4 cases
as shown in Table 5.2.1. TN(True Negatibe)
and FP(False Positive) are a mistake, so high
ratio of TP(True Positive) and FN(False Nega-
tive) is desired.

Prediction Real State Similar | Different
Similar TP FP
Different TN FN

Table 1 Classification of the Keal State and
Predicted Result

There are many kinds of methods for evalua-
tion. Precision is calculated by TP/(T P+ FP)
and Recall is calculated by TP/(TP + T'N).
High precision means when a program says two
proteins are similar, they are similar with high
probability. We get high precision by setting
high threshold of SS. High recall means the set
of protein pairs a program says contains most
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of the similar protein pairs. We get high recall
by setting low threshold of SS. Both indicators
are important but they can be achieved by op-
posite way thus they cannot occur in the same
time. Then F-measure is sometimes used in-
stead of these values, considering the trade-off.

F-measure is calculated by the following expres-
sion: 2-Precision- Recall

> Precision-+Recall * L .

We want to know if we can distinguish the

cluster by using SS, so we defined two thresh-
olds. One is the threshold for SS that two pro-
teins are thought to be similar and the other is
almost the same with RMSDh(3).

When the evaluation method is applied to
Figure 8, the maximum value of F-measure was
0.973. In the case, the threshold for SS was
—3.65 and the threshold for RMSDh(3) was
2.69Athat achieves 0.972 of Precision and 0.974
of Recall. These values are very high level, so
we can say there is a strong relationship be-
tween SS and RMSDh(3). Usually, the RMSD
value that two protein structures are decided
as similar is around 3.0A, and the result of this
experiment shows almost the same value as a
threshold for RMSD value on protein pairs.

5.3 Detecting the Existence of Hinge

Regions
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Fig.9 The relationship between S5 and RMSD di-
vided by RMSDh(3) when the protein size is
50

‘When there are hinge regions, the RMSD
value is not so small and the RMSDh value
is very small. Comparing these two values
to detect the existence of a hinge region is
a direct and very simple approach. Figure 9
and 10 show the relationship between SS and
sy Each figure is drawn with 20000
pairs of proteins that are randomly selected.
‘When there are hinge regions in a pair of pro-
teins, the value E—{M&MS'D—ShD(_SS is thought to have
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Fig.10 The relationship between $5 and RMSD di-
vided by RMSDh(3) when the protein size is
124

large value, then by comparing the value with
88, we can test whether our method can be used
to find some hinge regions.

In each graph, we can find some points show-
ing high ratio of RMSD to RMSDh(3). We can
also find that these points are on the right side
of the figure, that is, when SS is high, the ratio
has relatively high probability of having large
value. There are also the cases that 5SS is high
but the ratio is low. Those points are represent-
ing the very similar proteins, and their RMSD
value is very small. Because the RMSD value
is very small, the ratio stays small.

5.4 Example of Detecting Similar Pro-

tein Pairs Having Hinge Regions

Proteins SS RMSD | RMSDh(3) | FlexProt
1b01(4) -1.98 6.39 0.807 1.43
11fh

1a2w(B) -1.79 15.03 0.372 1.37
iwbu(4)

Table 2 Similar protein pairs found by our method,
having hinge regions

Table 5.4 shows the scores by many meth-
ods for several protein pairs found to be sim-
ilar by using our method. These pairs have
large RMSD values and small RMSDh(3) val-
ues that indicate they have hinge regions. By
using FlexProt, we got more precise result. The
result shows that our program can also be used
to detect the similar protein pairs having hinge
regions without treating the hinge regions as a
special event.

6. Conclusion

In this paper, we first defined features of the
Local Structures, and took statistics of the fea-
tures, then showed those features differ depend-



ing on the condition that the pair of proteins is
similar or not. By using the difference of the
features, we defined the Similarity Score (SS)
between Local Structures. After that, we de-
fined SS of a pair of proteins. The time for
calculating S5 between proteins is linear to the
length of proteins, though FlexProt takes O(nf)
time and RMSDh(n) takes O(n?) time.

We investigated the relationships between SS
our method gives and the score some exist-
ing methods give. The results are, (1) our
program is very fast that enables to compare
thousands of pairs of proteins in a second, (2)
there is a strong relationship between 5SS and
the RMSDh value, and we can predict whether
RMSDh value is small enough or not with 0.973
of F-measure, (3) our program can be used to
detect the existence of hinge regions. They sup-
port that our method is of use.

We conclude that we can detect whether
given two proteins are similar or not in very
short time with high accuracy by using the new
method. The method can also be used to reduce
the possibly-similar protein pairs to highly-
possibly-similar protein pairs even if there exist
some hinge regions. When we treat the exis-
tence of some hinge regions, our program is sev-
eral thousand times fast compared to the exist-
ing methods when the size of proteins are large.
The results show that our method is suitable for
exhaustive similarity search among proteins.

References

1) : A physical map of the mouse genome., Na-
ture, Vol.418, No.6899, pp.743-50 (2002).

2) : Finishing the euchromatic sequence of the
human genome., Nature, Vol.431, No.7011, pp.
931-045 (2004).

3) Berman, H. M., Westbrook, J., Feng, Z.,
Gilliland, G., Bhat, T., Weissig, H., Shindyalov,
I. and Bourne, P.: The protein data bank
(2000).

4) Bundschuh, R.: Rapid significance estimation
in local sequence alignment with gaps, RE-
COMB ’01: Proceedings of the fifth annual in-
ternational conference on Computational biol-
ogy, New York, NY, USA, ACM, pp. 77-85
(2001).

%) Chew, L.P., Huttenlocher, D.P., Kedem, K.
and Kleinberg, J.M.: Fast Detection of Com-
mon Geometric Substructure in Proteins, Jour-
nal of Computational Biology, Vol.6, No.3/4
(1999).

6) Dayhoff, M., Schwartz, R. and Orcutt, B.: At-
las of protein segquence end structure, Vol. 5,

chapter A model of evolutionary change in pro-
teins., pp. 345-352, National Biomedical Re-
search Foundation (1978).

7) Eidhammer, 1., Jonassen, I. and Taylor, W.
R.: PROTEIN BIOINFORMATICS, chaptera,
John Wiley and Sons, Ltd (2004).

8) Gerstein, M. and Hegyi, H.. Comparing
genomes in terms of protein structure: surveys
of a finite parts list (1998).

9) Henikoff, S. and Henicoff, J.: Amino acid sub-
stitution matrices from protein blocks, Proc
Natl Acad Sci U S A, Vol.89, No.22, pp.10915-
10919 (1992).

10) Holm, L. and Sander, C.: Protein structure
comparison by alignment of distance matrices.,
J Mol Biol, Vol.233, No.1, pp.123-138 (1993).

11) International: The map-based sequence of the
rice genome, Nature, Vol.436, No.7052, pp.793—
800 (2005).

12} Maiorov, V.N. and Crippen, G.M.: Signifi-
cance of root-mean-square deviation in com-
paring three-dimensional structures of globu-
lar proteins., J Mol Biol, Vol. 235, No.2, pp.
625634 (1994).

13) Miao, X., Bryson, M. and Valafar, H.: TALIL:
Protein Structure Alignment Using Backbone
Torsion Angles, BIOCOMP, pp.3-9 (2006).

14) Murzin, A.G., Brenner, S.E., Hubbard, T. and
Chothia, C.: SCOP: a structural classification
of proteins database for the investigation of se-
quences and structures., J. Mol. Biol., Vol.247,
pp.536-540 (1995).

15) Nussinov, R. and Wolfson, H.J.: Efficient de-
tection of three-dimensional structural motifs
in biological macromolecules by computer vi-
sion techniques., Proceedings of the National
Academy of Sciences of the USA, Vol.88, No.23,
pp-10495-10499 (1991).

16) Shatsky, M., Nussinov, R. and Wolfson, H.J.:
FiexProt: alignment of flexible protein struc-
tures without a predefinition of hinge regions.,
J Comput Biol, Vol.11, No.1, pp.83-106 (2004).

17) Shatsky, M., Wolfson, H.J. and Nussinov, R.:
Flexible protein alignment and hinge detection,
Proteins: Structure, Function, and Genetics 48
(2002).

18) Shibuya, T.: Fast and Accurate Algorithms for
Protein Hinge Detection, IPSJ SIG Notes SIG-
BIO, Vol.10, No.4, pp.25-32 (2007).

19) Verbitsky, G., Nussinov, R. and Wolfson, H.:
Structural comparison allowing hinge bending
(1999).

20) Ye, J., Janardan, R. and Liu, S.: Pairwise
Protein Structure Alignment Based on an
Orientation-Independent Representation of the
Backbone Geometry.



