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A Combination Method of the Tanimoto Coefficient and Proximity Measure
of Random Forest for Compound Activity Prediction

GEN KAWAMURA,' SHIGETO SENO," YOICHI TAKENAKA?
and HIDEO MATSUDA'

Chemical and biological activities of compounds provide valuable information for discover-
ing new drugs. Since the number of compounds that are known to have some activities of a
biological class is small in the drug discovery process, the accuracy of the prediction should
be increased in databases that have a large number of un-annotated compounds and a small
number of annotated compounds of the biological activity. In this paper, we propose a new
similarity scoring method composed of a combination of the Tanimoto coefficient and the
proximity measure of random forest. The score contains two properties that are derived from
unsupervised and supervised methods for predicting active compounds. Thus, the proposed
method is expected to indicate compounds that have accurate activities. By evaluating the
performance of the prediction compared with the two scores of the Tanimoto coefficient and
the proximity measure, we demonstrate that the prediction result of the proposed scoring
method is better than those of the two methods by using the Linear Discriminant Analysis
(LDA) method. It is also shown that the proposed method can identify active compounds in
datasets including several un-annotated compounds.

. tion, the targets of a particular gene family have
1. Introduction ' . & P . & v .
become available, and genomics methods are being

A compound similarity and screening method
have to meet important criteria in order to
be used in current drug discovery and develop-
ment.”Speciﬁcally, the completion of the human
genome project has a serious impact on the drug

discovery process. As a consequence of its comple-
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developed to identify protein targets for novel drug
candidates.To identify these targets, systematic ex-
ploration of selected target families, without prior
restriction to a specific therapeutic area, appears
to be a promising method to improve the ligand
identification process in drug discovery.

On the other hand, evaluating the structural
similarity, several well-known methods in statis-
tics and machine learning algorithms have been ap-



plied. All of these methods (e.g., artificial neural
networksz), partial least squaresB) and support vec-
tor machine®) have many successful merits in the
structural similarity and screening methods.

However, there are several problems with accu-
rate prediction that arise from the requirement in
the compound structural similarity searching. One
of the problems is the number of biologically an-
notated compounds is insufficient compared with
the total number of compounds. In fact, although
the amount of compound data is growing rapidly,
the number of newly biological annotated com-
pounds has not increased quickly. Such databases
contain enormous numbers of un-annotated com-
pounds and few of the annotated compounds of the
biological activity.

In this paper, we propose a similarity searching
and screening method to estimate some scores and
distributions of variance by means of measures be-
tween the Tanimoto coeflicient and proximity mea-
sure® and a method to combine the Tanimoto co-
efficient and the proximity measure in order to
improve prediction accuracy. Here, the proximity
measure is a new ensemble method called random
forest in machine learning algorithms to measure
the similarity with high-dimensional data by using
decision trees.) Applying this method to similar-
ity search, we can obtain efficient performance for
searching compounds in some activities, without re-
optimization of the fingerprint.

2. Method

In this section we present the proposed method,
which is based on the MACCS key, the Tanimoto
coeflicient, random forest and proximity measures.
In addition, we present a Linear Discriminant Anal-
ysis (LDA) to evaluate the prediction accuracy and
to combine the scores between the Tanimoto coef-
ficient and the proximity measure.

2.1 Input variables

In the present study, we use the MACCS key,
a fingerprint proposed by MDL, as the input vari-
able of feature quantity of the compound structure.
Fragments of chemical structures can be coded in
binary keys, which are presented as sequences of Os
and 1s (bitstrings). O represents a fragment that

does not exist in the structure; otherwise, the bit is
1, which indicates that the fragment exists. Specif-
ically, this characteristic structure sequence, called
the fingerprint, of the MACCS key has a length of
166 keysets.”®)

2.2 Classifier methods

We consider two classifier methods, the Tani-
moto coefficient and proximity measures, to eval-
uate compound similarity using the MACCS key.

In order to measure the similarity between two
compounds using the above described fingerprint, a
number of similarity measures have been proposed.
We consider a widely used similarity measure called
the Tanimoto coefficient, which is defined by

s=c/la+b—c) (1)
where a is the number of 1s of the fingerprint of
compound A4, b is the number of 1s of that of com-
pound B, and c is the number of 1s common to
both A and B.?) In a similarity search using this
measure of the fragments that are represented by
fingerprints, the compounds in the database are ag-
gregated by biological activities, and it is thus ap-
propriate to select similar compounds in data com-
parison of the coeflicient.

In machine learning, random forest is a classi-
fier that consists of several decision trees and out-
puts the class, which is the vote of the classes
output by individual trees. This method com-
bines Breiman’s bagging'® concept and Ho’s ran-
dom subspace method'? to construct a collection
of decision trees.”

Usually, in the study of Quantitative Structure-
Activity Relationships (QSAR)®, random forest
consists of B trees {T1,...,T8}. For compound ac-
tivity, a set of their class labels is

Y={C/|l=1,...,m} (2)
where C) is a class label, and m is the total num-
ber of the classes. Each compound has a variable
X = {z1,...,zp} which is a p-dimensional vector
of compound descriptors or fingerprints associated
with their structure. Here, we consider the training
procedure of random forest for given data

D= {(Xh Yl)7 ey (Xm Yn)}
where X;,4 = 1,...,n, is a p-dimensional vector
and Y; is a class label. For above data D, the train-

ing procedure is as follows:



(1) Each tree is grown by bootstrap sampling.
Each tree of size n is randomly drawn from
the original data of n points and returns.

(2) For each bootstrap sample, the decision trees
in the random forest are grown by the CART
algorithm*® to full length and are not pruned
back. At each node of a tree, the random
forest algorithm randomly selects msry de-
scriptors or fingerprints as input variables,
and uses them to choose the best possible
split. Generally, this algorithm is sufficiently
robust for the selection of the number myry,
whose value is usually chosen as the square
root of the total number of variables.

(3) Thenumber of trees in the forest is grown un-
til achieving a low error rate of convergence.

A bth desicion tree T3 for an compound with fin-
gerprint of X outputs a class label Y3(X) € Y as
its prediction. Thus, the ensemble of trees outputs
the class labels {¥i(X), ..., Y5(X)}. The outputs of
all trees are aggregated to decide one final predic-
tion, Y. For simple classification problems, Visa
class label predicted by the majority of trees. This
voting rule is given by

B
Y = argmax,ey Y 1(%(X), v) (3)
b=1

where I is the following indicator function:
I(ky,k2) = 1 if k1 = K2, and 0 otherwise.

In addition, in our classification analysis, we use
the proximity measure of the above classifier trees
to predict the similarity between two compounds
in the fingerprint space. For the estimation of two
compounds for the evaluation of the similarity by
which to classify the assigned labels as each class,
the proximity measure is defined as the probability
of assigning two compounds to the same node of
the ensemble trees. Although general researchers
may be interested in the random forest voting clas-
sifier in order to determine the tree that is most
relevant to the activity of interest, some studies
have reported that the proximity measure of a ran-
dom forest can be calculated between any pair of
compounds in clustering analysis.®) Given two com-
pounds that have the variables X; and X5, the

proximity measure p is

p=p > I(T4(Xa), To(Xa)) @

More specifically, this measure of proximity has
an advantage. This proximity measure is super-
vised because the proximity measure of random for-
est is created by the compounds depending on each
dataset and database.

2.3 Combination of scores

To cope with the problems associated with the
Tanimoto coefficient and the proximity measure of
random forest, we propose a new similarity scor-
ing system that considers their combination using
Linear Discriminant Analysis (LDA). The LDA eas-
ily handles cases in which the class frequencies are
unequal and their performances have been exam-
ined by randomly generated situations.’® Given
the score distributions of the Tanimoto coefficient
and the proximity measure, we introduce the vari-

able F; in order to make the discriminant model.
k

Fo=> wiZ; (i=1...n) (5)
=1

w; is the weight variable for the variable Z;,
which is normalized by the original scores z;;. z;
denotes the classification score of the ith group on
the jth explaining variable. Z;; is given as

gj
(i=1...n,j=1...k)
where o; is the standard deviation, z;; is the ith

Z; = ®)

classification score for the respective case for the jth
explaining variable, and M; is the mean of variable
x;; for the jth variable. This method maximizes the
ratio of the class variance in this specific data set
to the class variance in any particular data set and
guarantees maximal separatability from the distri-
butions of several variables of the class. In this
study, in order to increase the hit rate of similarity
search, we estimate this method as a combination
of two distributions in order to combine the scores
of the Tanimoto coefficient and the proximity mea-
sure from Egs.(1), (4), and (5).

F, (tp) = ws Z; o (tp) + w3 Z; 5(tp) @
F, (fp) = wsZ; o(fP) + ws Z: 5(fD) 8)



Table 1 Classes and the number of Training sets

MDDR activity class no. in class
Dopamine (D1) Antagonist 180
Dopamine (D3) Antagonist 280
Dopamine (D4) Antagonist 674
Estrogen 257
Estrogen Receptor Modulator 210
Antiestrogen 297
randomly selected 1000

For distributions of the true positives (¢p) and the
false positives (fp), Z; s and Z; 5 are represented by
Eq.(6).

Zitp) = T (e 1) ©
Zuitr) =22 i gp) (10)
Zistr) = B2 e )
Zy(f0) = B2 (e ) (12)

Here, we can obtain the discriminant model Ft/p
and F' }p from the above equations. LDA determines
the appropriate distribution functions Ft/p and F. }p
to combine each score of the Tanimoto coefficient
and the proximity measure depending on the true
positives and false positives from the base value F(; .
My, + M)
g (s)

where MFr,, and Mr,, are the mean values of two
distributions, Fip and Fy,. The distribution func-

tion F; can provide a classifier, which is classified

F(;:

as the base value Fy, that is expected to increase
the accuracy of predicting the targets. The results
are presented in Section 3.

3. Results and Discussion

In this study, we used R, an open source sta-
tistical computing software from the R project for
Statistical Computing, to perform data analysis.'?

3.1 Data set for experiment

The compounds in the MDDR2004.2 database!®
were sampled as data sets from the activity class
associated with the target protein. Here we used
Estrogen and Dopamine classes which have known
activity as the target proteins of Estrogen and
Dopamine receptors, respectively (shown in Table
1).

All compounds of these data sets have activity

classes that were selected as the target receptor.
Thus, the other data, with the exception of the ref-
erence class, is randomly selected and is designated
as belonging to the “other” class. The former and
latter data sets were regarded as positive examples
and negative examples for predicting activity in our
method, respectively. These data sets were merged
into a single set, and randomly split into two sub-
sets as experimental data. The first half served as
a candidate data set for similarity searching and
the second half was used to form a reference set
(training data).

3.2 Classifier

First, we discuss a similarity measure of the Tan-
imoto coefficient, so as to provide a cooperative
line of performance for the similarity measure based
on simple compound structural distance. Also, we
show the results of proximity measure to consider
different points between the Tanimoto coefficient
and the proximity measure.

Figures 1 and 2 show the results for precision
when the activity classes were predicted using each
classifier.

The most frequently used and basic measure for
information retrieval effectiveness is precision. Pre-
cision is the fraction of the retrieved compounds
that are relevant to successfully retrieval. Preci-
sion is usually measured as the ratio between the
true positive rate predicted and the true positive
rate of all of the predictions of each classifier.

Precision = tp (14)

tp+ fp

If all of the predicted classes are correct, this mea-
surement can retrieve the compounds as a perfect
classifier without any mistakes.

Based on this data, the proximity measures ex-
hibit comparable or better precision than the Tan-
imoto coefficient. As mentioned previously, one fo-
cus of the present study for classification in drug
discovery is a method by which to improve the true
positive rate of similarity search by deselecting sev-
eral un-annotated compounds. The reason for the
slightly higher degrees of precision of classes re-
mains unclear. However, in the previous studys),
the proximity measure was already mentioned that
it could show good performance of the hierarchical
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Figure 1 Precision of proximity measure and Tanimoto
coefficient for Estrogen. The bars labeled TC,
1nn, 3nn and 10nn denote the precision of the
Tanimoto coefficient and proximity measures
for Inn, 3nn, and 10nn, respectively.

clustering. The Tanimoto coefficient, on the other
hand, does not take into account the discriminat-
ing power and treat all fingerprints equally, which
resulted in lower performance. Also, from Figs. 1
and 2, the proximity measure can predict each class
with accuracy. This investigation for the precision
scores of the proximity measure and the Tanimoto
coefficient would show that the proximity measure

corresponds to the general similarity distance in the
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Figure 2 Precision of proximity measure and Tanimoto

Procision

coefficient for Dopamine. Abbreviations are
same as Figure 1.

rate of score ranking.

Owing to its good performance in the proximity
measure, these data provide not only a supervised
quantitative value for the degree of resemblance
between two compounds, but also their alignment
without parameter tuning.

In addition, these results include the possibility
of the accuracy rate of activities discovered when
the two rankings of the Tanimoto coeflicient and

proximity measure are fused. The precision results



show that the fusion-generated hit-lists might con-
tain more accurate activities than either of the only ER Dopamine (D1) Antagonist
candidate rankings by using the Tanimoto coefi-
cient.

3.3 Combination of scores

Precision

e Estrogen

T PMim DA

Procision

° o Dopamine (D3) Antagonist

PA IO LoA Bl

Procision

° Estrogen Receptor Modulator

T

PM1m LDA

Procision

A

Dopamine (D4) Antagonist

10

k_,__

PMnn DA

Procision

° Antiestrogen

\ Phim won
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estrogen and dopamine classes, respectively. The

FMInn DA
true positive rates increase by the combination of
Figure 3 Precision of the proximity measure and the Tan- the Tanimoto coefficient and the proximity mea-
imoto coefficient for Estrogen. The bars labeled sure. In addition, the prediction accuracy of the

TC, PM 1nn, and LDA denote the precision of
the Tanimoto coefficient, the proximity measure
for 1nn, and their combination (LDA), respec- of their difficulty. In only Dopamine (D1) antago-
tively.

Dopamine (D1) antagonist class decreases because

nist class, our combination model of LDA cannot
create well, caused the number of all training data

Figures 3 and 4 show the results of precision plots is less than 100 and the training data to create LDA
before and after the consideration of the LDA for model is also less than 50. As a result, the combi-



nation method is sensitive to only the number of
training data. The line with results of our study
showing that more than 100 ligands which have a
subset can be recognized more efficiently with our
combination method defined by supervised and un-
supervised. But, in this situation, even other way
of only the Tanimoto coeflicient or other supervised
method cannot be expected very good accuracy of
the prediction.

In our study, the three types of searches of LDA
produce relatively better performance for retrieved
accuracy with respect to the number of active com-
pounds retrieved. These combination can provide
the results of our study showing that the tendency
of distribution for the true positives and false posi-
tives of the Tanimoto coefficient and the proximity
measure generated the improvement of the retrieval

accuracy.
4. Conclusion

Fingerprint-based structural representation and
the Tanimoto coefficient are very widely used for
similarity searching and virtual screening of chem-
ical databases. Although both are efficient and ef-
fective for prediction, the fingerprint and the Tani-
moto coeflicient exhibit several undesirable charac-
teristics, and there is continuing interest in alter-
native approaches. We have described the methods
of the proximity measure on similarity search and a
method combining the different distances on finger-
print space and have succeeded in efficient similar-
ity searching of large chemical databases. We have
shown that such searches are effective for improv-
ing the degree of predicted accuracy. The Tanimoto
coefficient and the proximity measure identified ac-
tive compounds from the experimental datasets in-
cluding several un-annotated compounds. The re-
sults of the proposed method and compound activ-
ity analyses revealed a useful method of obtaining
similarity scores, and these observations could be
rationalized considering some inherent features in
the calculation of chemical structures.
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