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Abstract

Improving the accuracy of Bayesian network learning from data is a decisive challenge to
model huge systems such as genes networks. With this end, we propose to constraint the
scoring function based algorithms with a super-structure encoded by an undirected graph.
This restricts the possible edges of the networks to the ones it contains. Further, we introduce
a basic method to approximate a super-structure from data. Then, we develop a constrained
optimal search (COS) that extends exact algorithms to sensitively bigger graphs, and a
heuristic hill climbing over topological orderings (PERM). Experimentally, these algorithms
outperform significantly other approaches.

1 Introduction

It is impossible to understand large raw sets of data obtained from a huge number of correlated
variables. Therefore, in order to simplify the comprehension of a system, various graphical
models have been developed to summarize interactions between the variables in a synoptic
graph. Among the existing models, Bayesian networks have been widely employed for decades
in various domains including bioinformatics (Ott et al., 2004). This model is popular because it
is robust with respect to noisy or incomplete data, it can easily include prior knowledge, and it is
simple to use. Setting the parameters of a Bayesian network from the data is a well known task
when its structure is known. Thereby, the bottleneck of modeling an unknown system is to infer
the true structure. In fact, any directed acyclic graph (DAG) could be a true representation of
the causal relations among the variables.

Despite of their relatively long usage, algorithms devoted to structure learning remain of a
poor accuracy, especially when considering huge sets of genes. Those algorithms are regrouped in
two distinct approaches: Independency Test (IT) based (Spirtes et al., 2000) and score function
based algorithms (Chickering et al., 1995). Both approaches are suffering from severe drawbacks.
On one hand, the IT sensitivity to noise leads to accumulate structural errors that greatly affect



the accuracy of the results. On the other hand, since the search space is of a super exponential
size, algorithms cannot find the global optima of the score function; hence, they conduct only
a greedy search and find locally optimal graphs. However, a recent comparative study carried
out by Tsamardinos et al. (2006) showed the superiority of a hybrid algorithm, MMHC, both in
terms of structure accuracy and speed. The method consists in approximating the skeleton of
the true graph with an IT based technique, MMPC, and then, using this structure to constraint
the search space of a classic hill climbing search.

Following this empirical study, we propose to formalize structural constraints over DAGs
by defining the concept of a super-structure. This is a flexible constraint that does not fix the
skeleton of graphs, but only limits possible edges to the one it contains. In other words, it is a
“super-skeleton” and we use it to restrict the search to graphs whose skeleton is covered by it.
We give a formal definition of super-structure in Section 3; from MMPC, we derived a method
to approximate such structures (Perrier et al.) that we are using in our experiments.

Furthermore, in Section 4, we propose a constrained optimal search algorithm (COS) that
globally maximizes the score function over the reduced search space. This algorithm proceeds
faster than a general optimal search, since fewer cases have to be considered, which enables its
application to bigger networks provided the super-structure is sufficiently sparse. Moreover, if
the given constraint covers the true graph, our algorithm returns graphs more accurate than
those of an optimal search.

Finally, since the complexity of constrained exact algorithms remains exponential, we develop
a heuristic algorithm PERM that enables to consider bigger networks. In fact, given a super-
structure constraint, we can define and calculate efficiently the score of a topological ordering
as we show in Section 5. Subsequently, the algorithm can conduct a greedy hill climbing over
the space of orderings, which enables a wider browsing of the search space since an ordering
represents an exponential number of graphs. Experiments confirm the superiority of PERM over
every heuristic search for a wide range of networks.

2 Definitions and Preliminaries

We will use upper-case letters to denote random variables (e.g., X;, Vi) and lower-case letters for
the state or value of the corresponding variables (e.g., ;, v;). Bold-face will be used for sets of
variables (e.g., Pa;) or values (e.g., pa;). We will deal only with discrete probability distributions
and complete datasets for simplicity. Given a set X of n random variables, we would like to
study their probability distribution Py. To model this system, we will use Bayesian networks:

Definition 1. (Neapolitan, 2003) Let P be a discrete joint distribution probability of the random
variables in some set X, and G = (X, E) be a directed acyclic graph (DAG). We call (G, P) a
Bayesian network (BN) f it satisfies the Markov condition, i.e., each variable is independent of
any subset of its non-descendant variables conditioned on its parents.

We will denote the set of the parents of a variable X; in a graph G by Pa;. To study X,
we are given a set of data D following the distribution Py, and we try to learn a graph G,
such that (G, Py) is a faithful Bayesian network. This means that all and only the conditional
independencies true in the distribution P are entailed by the Markov condition applied to
G (Neapolitan, 2003). Moreover, in order to learn G, we are given a scoring criterion that
evaluates how well the graph fits the data; in our experiments we use the Bayesian information
criterion (BIC) (Schwartz, 1978). It is usually costly to evaluate; however, due to the Markov
condition, it can be evaluated locally:

Score(G,D) = Z score(X;, Pa;, D)

=1
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Figure 1: In a search constrained by S, Gy could be considered since its
skeleton is a sub graph of S. Conversely, G2 is not considered because
(X4, X5) ¢ Es.

This property is essential to enable efficient calculation, particularly with large graphs. Finally,
our task is to maximize the score function over the space of DAGs. In addition, we enunciate
the following theorem that is useful to identify the skeleton of G:

Theorem 1. (Spirtes et al., 2000) In a faithful BN (G, P) on variables X, there is an edge
between the pair of nodes X and Y if and only if X depends on'Y conditioning on every subset
Z included in X\ {X,Y}.

This result is crucial for IT based approach. It implies that we can estimate the skeleton of
G by performing conditional independency tests (Tsamardinos et al., 2006) using a significance
level o to decide if the value of the test implies independency or dependency.

3 Super-Structure

Since reducing the search space by constraining on the skeleton of considered networks is con-
firmed to be a decisive step in network learning, we propose to define the concept of a super-
structure by:

Definition 2. An undirected graph S = (X,Eg) is said to be a super-structure of a DAG
G = (X,Eg), if the skeleton of G, (X,Eq) is covered by S (i.e., Eq: C Eg).

Further, we propose to constraint algorithms by reducing the search space to the space of
DAGs that admit a given super-structure, .S, as shown in Figure 1.

Thereby, we separate the problem of structure learning in two sub-problems. First, we
have to learn an undirected graph S that contains at least true causal neighborhoods of each
variable. Then, given this super-structure, we search for a constrained DAG that maximizes
the score function (global optima if it is possible). Finally, an advantage of S is that it can be
more easily learnt from data than the true skeleton by using an IT method. This is because
extra edges are authorized in a super-structure; hence, higher values of the significance level
are allowed, which reduces the rate of false negative discoveries, i.e. missing edges. We derived
from MMPC (Tsamardinos et al., 2006) a routine to approximate super-structures in Perrier
et al.. This is a basic technique poorly approximating S; however, we use it in our experiments,
awaiting better methods that remain to be proposed.

4 Super-Structure Constrained Optimal Search

Here, we propose to constraint the optimal search (OS) of Ott et al. (2004) with a given super-
structure S = (X, Eg). We will refer to the neighborhood of a variable X; in S by N(X;) that
is the set of nodes potentially connected to X; ({X; | (Xi, X;) € Eg}). Our task is to find a
graph that globally maximizes the score function in the reduced search space. For this end, by



using the score locality, we introduce the function F' = (Fj, F},) defined by:
Definition 3. VX; € X, and A C N(X;), F, (and Fp) are defined by:
Fi(X;,A) = maxscore(X;,B,D)
BCA

F,(X;,A) = argmaxscore(X;,B,D)=DB"
BCA

In other words, F; returns the best score possible for X;, considering any possible parent sets,
and F), gives this precise optimal parent set, B, over subsets of A. With a super-structure

constraint, F' needs only to be defined on the neighborhood of each X; and not on X\ {X;}.
Further, I can be calculated recursively by using the following formulas:

Fo(X;,0) = score(X;,0) and Fu(X;,0)=90 (1)
Fs (Xi’ A) == max(score(Xi, A)v )r(ng)}i(Fs (X’H A\{XJ})) (2)
F(X6,A) = aramax(score(X,, A), pa (7 (X, A\, )) 0

Therefore, the total cost of calculating F' is lower than O(n2™), where m is the maximal degree
of S (i.e,, m = maxyx,ex |IN(X;)|); it can be considered as linear if m is bounded by a small
constant. This is a decisive improvement compared to OS that needs O(n2" 1) dynamical steps.
Moreover, to guarantee acyclic graphs, we must build a graph G such that there exists at least
one topological ordering w over X for G. To do this we define the function M = (M, My) by:

Definition 4. YA C X, let the following functions be

s
®
[

max Score(N) ,with N = (A,E) a DAG on A
My(A) = argmaxScore(N), with N as before
N

By using these functions, an optimal graph is simply referred by My(X), and its score is M,(X).
The main advantage of these functions is that they can be calculated recursively by using the
following initialization:

M({X:}) = score(X;, D)

VX e X: My({X:}) = ({Xi},0), the graph containing only X; (4)

While considering A C X, with [A] = k > 1, we should find the last element of an optimal
ordering over A, X;~ in order to derive the recursive formulas. This element cannot be a parent
of any other node in A\{X;+} but can have all of them as parents. Hence, it is derived as follows:

X+ = argmax(F,(X;,B;) + M,(B;)) with B; = A\{X;} (5)
X;€A

In other words, X;- is the element among every X; in A that is the best for placing at the
bottom in a topological ordering on A. For more details, lectors should refer Ott et al. (2004).
From this equation, we can conclude that:

MS(A) = FS(Xi*,Bi*)"r‘Ms(Bi*) (6)
My(A) = (A E) with the edge (X,, X3) € E if and only if: (7)
—(Xq, Xp) € E* with My(B;~) = (B;, E*) an optimal graph on B;-
=Or (Xg, Xp) = (X, Xy»), with X; € Fp(X;«, By=)
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Figure 2: Given S, A; is a connected subset, while A is not, because
for example, there is no path in A; between X7 and Xj.

Here, B;~ is equal to A\{X;~}. Moreover, it is not necessary to calculate explicitly M for every
A. To show this, we need to define the notion of connectivity.

Definition 5. Given an undirected graph S = (X,Eg), we say that a subset A C X is a

connected subset, or connex, if and only if A # 0 and ¥(X;, X;) € A%, X; = X, or there
exist an undirected path of nodes in A between X; and X; (i.e., there exist [X;, -, X)) a
list of elements in A, with p > 2, X;;, = X; and Xy, = X; such that Vk in [1,---,p — 1],
(X5, Xiy,1) € Es, cf. Figure 2).

In fact, when A is unconnected, we can simply derive the value of M from the results of
C(A) = Cy,---,C, that is the family of mazimal connected subsets of A (Perrier et al.). This
result is summarized by the following formulas: ,

My(A) = (A,E), with E = | J E; where M,(C;) = (C;, E;) (8)

=1

P
Ms(A) = ZMS(Ci) (9)
i=1
Consequently, only and exactly the connected subsets of X (Con(S)) are needed to calculate
M, (X) that is an optimal constrained DAG. We can now present the pseudo code of COS (where

the underlined parts correspond to what have been changed from a classic OS):
Algorithm 1 (COS).
(a*) Initialize VX; € X, F5(X;,0) and F,(X;,0) with (1)

(b*) Foreach X; €X
For k =1 to [N(X;)| and each A C N(X;) with |[A| =k

Calculate Fy(X;, A) and Fp(X;, A) using (2) and (3)
(c¢*) Imitialize VX;, Ms({X;}) and My({X;}) [and M,,({X;}) ] using (4)

(d*) For k =2ton and YA € Con(S) with |A| =k
Select X;+ in A using (5) and (9)

Then, define M,(A) and My(A) using (6), (9), (7), and (8)
(e*) Return My(X) using (8) if needed

Therefore, the total complexity of Algorithm 1 is simply O(n2™ + |Con(S)|) instead of
O((% +1)2"). In Perrier et al. we defined a tree-like structure H that represents efficiently
and unambiguously Con(S). We derived as well an upper bound and the average behavior of
|Con(S)} depending on S. The complexity of COS remains exponential; however bigger networks
can be considered if their structure is enough sparse.



5 PERM: A Greedy Search Over Orderings

Despite the fact that optimality cannot be achieved for huge networks, there is still some optimal
results that can be calculated for any network size when constraining with a super-structure S.
In fact, since Pa; C N(X;), it is possible to calculate F in pre-processing for a total cost bounded
by O(n2™) if the maximal degree m of S is not too big. From this, we define the score of a
topological ordering w by:
n
Score(w) = ZFS (Pred,, (X;) NN(X;), X;) (10)

i=1

Here, Pred,,(X;) represents the set of variables that precede X; in the ordering w, that is
{X; such that w(X;) < w(X;)}. Then, we can obtain the optimal constrained graph G, =
(X,E;) that admits w as topological ordering, by defining the parent set of each variable on
the following manner:

Pa; = {Xj such that (X;, X;) € E} } = Fp(Pred,,(X;) " N(X3), X;) (11)

By using (10), it is possible to calculate in linear time the score of an ordering, and thus,
to compare efficiently orderings. Therefore we develop a greedy hill climbing search over the
space of orderings (PERM) that proceeds in the following manner. It starts by calculating F* and
selects a randomly generated ordering wo. At each step, it considers every ordering w; ; obtained
from wp after swapping two elements, i.e., w;j = 7 j o wo, where 7; ; swaps 1 and j, and o is the
operator of composition. If a swap 7* improves the score of wy, it updates wy = 7% o wy and
continues the search. Otherwise it returns G, by using (11). In the following implementation,
A, ; is the score difference between w;; and wg, and Ap,qe is max; ; Ad, 5.

Algorithm 2 (PERM).
(a) VX, € X and VA C N(X;) calculate F(X;, A) using (1), (2), and (3)
(b) Initialize wy randomly
(¢) Fori=1tonandforj=i+1to n: calculate A; ; using (10)
(d) If Apgs > 0, then wo = 7% 0 wp and repeat from step (c)
(e) Otherwise return Gy, using (11)

Algorithm 2 is a typical hill climbing search; however, it is original by the fact that the
search space is the one of orderings and not the one of DAGs. Since an ordering represent an
exponential number of DAGs, it is more powerful than other greedy hill climbing algorithms
because the search space is more widely and efficiently browsed. Moreover, the resulting graph
is optimal for its topological ordering. Finally, nothing can be asserted about the complexity of
PERM, with the exception that the algorithm ends since the score of wy is strictly improved at
each step, and that the step (c) requires O(n®) memory accesses.

6 Results and Conclusion

In the following experiments, we consider five algorithms, including OS (Ott et al., 2004), our
structure constrained optimal search COS (Algorithm 1), state-of-the-art hill climbing HC,
PERM (Algorithm 2), and MMHC (Tsamardinos et al., 2006). MMHC was selected because it
appears to be actually the most efficient greedy search in terms of speed and accuracy. We com-
pare these five algorithms by using three criteria. The first one is the score of the resulting graph
(here we use BIC). The second one is the Structural Error Ratio (SER) that helps evaluating the
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Figure 3: Classification of algorithms by score Figure 4: Classification of algorithms by SER
for every parameters n,m and d. for every parameters n,m and d.

accuracy of the resulting graph. To take into account the fact that equivalent graphs have the
same score, we build the CPDAGs of both original and learnt DAGs (Chickering, 2002b), and
we compare their structure. Thereby, we define the SER as being the number of extra, missing,
and wrongly oriented edges divided by the total number of edges in the original graph. In fact,
we decided to penalize wrongly oriented edges only by half, because we consider that errors in
the skeleton are more “grave” than those in edges orientation. Finally, we measure the time of
execution of each algorithm to estimate their complexity.

Here, we refer to the average degree of a graph by m. Given n and 7, we generate a random
ordering of the n variables, and on this basis, we build a DAG that admits it as topological
ordering by randomly adding L%J edges to obtain the correct average degree. For simplicity,
we decided to consider only discreet variables, and practically all of them are Boolean. Conse-
quently, to obtain Bayesian networks, for each variable X;, we generate conditional probabilities
P(X; = 0|Pa; = paf¥) for every possible paf by choosing a random real number in ]0,1[. Fi-
nally, a set of d data is artificially generated from the Bayesian network, by following its entailed
probability distribution. On this manner, for every n € [6,10,14,18,20], m € [1,1.5,2,2.5, 3],
d € [500, 1000, 5000, 10000], we generated 30 different models, tested every algorithm and aver-
aged the criteria. Thus, in total we considered 3000 different models.

Moreover, since the significance level we used in our experiments is low (@ = 0.05), the
approximated super-structure is lacking some true edges. This implies that the score of con-
strained algorithms is penalized by errors in the pre-processing phase. That is why we extend
every constrained algorithm by adding a post-processing phase. It consists in applying an uncon-
strained greedy hill climbing starting from the results of these algorithms. We name MMHC+,
PERM+ and COS+ these post-processed versions. Such process usually improves the score but
not always the accuracy.

Due to the shortage of place, we cannot report all the results. Therefore, we chose to
summarize the results by the synoptic Figures 3 and 4. To make these Figures, for every triplet
(n, ™, d) we ranked the algorithms by their score (respectively, their SER), the first one being
the one that maximized the score (respectively, minimized the SER). OS was not considered
since it is always the best algorithm. When two algorithms were equal, they were given the
same rank j, the next rank becoming j + 2. At last, we represent visually these 100 rankings
by affecting a color to each rank: the clearer being for the best algorithm, and the darker, for
the worst. Thereby, we can quickly compare the quality of algorithms by watching these figures,
and see how parameters affect them.

Following our experiments, in general the classification of the algorithms by their score is:



0S, COS+, PERM+, MMHC+, HC, COS, PERM, and MMHC. Similarly, concerning SER, the
most frequent order is: OS, COS+, PERM+, COS, PERM, MMHC+, MMHC, and HC. The
first interesting remark that we can notice is that there is not a strict link between structure
accuracy and score. For example, HC returns nearly always graphs having a higher score than
COS or PERM. This is because, as we said, the super-structure was poorly approximated by
MMPC, and some of the missing edges could improve the score a lot. However, even with this
poor constraint, our algorithms perform better in terms of SER; this means that the super-
structure forbids many wrong edges that also improve the score. In fact, IT and scoring criteria
have their own sensitivity, and by using both approaches we can augment our chances to find
a good model. Moreover, it is also probably due to the fact that for COS, and partially for
PERM, the results are constrained optima, which implies that they escaped from many local
optima.

Therefore, these experiments illustrate the interest of structural constraint and optimal
searches. Further, in terms of complexity, COS is of several order faster than OS, although
the latter was given the size of the maximal parent set for each graph. It can be used safely for
networks containing about forty variables. However, for bigger networks, it is applicable only if
the skeleton of the graph is fairly sparse. Conversely, PERM is nearly as fast as MMHC, the
fastest search actually in use. Its superiority is confirmed for bigger networks, despite the fact
that the SER is slightly increasing when n augment. Unfortunately, it is not feasible yet when
the approximated super-structure has a too high maximal degree m. We are actually thinking
about other greedy strategies that could improve frther our results, and also, about new and
more efficient methods to learn a super-structure.
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