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Abstract Protein secondary structure prediction is one major task in bioinformatics. In particular, it is a challenge to predict S-sheet
structures since they range over several discontinuous regions in an amino acid sequence. In this paper, we propose a dynamic programming
algorithm for some kind of antiparallel 3-sheet, where the proposed approach can be extended for more general classes of 3-sheets.
Experimental results for real data show that our prediction algorithm has good performance in accuracy. We also show a relation between
the proposed algorithm and a grammar-based method. Furthermore, we prove that prediction of planar B-sheet structures is NP-hard.

1 Introduction ture prediction. In particular, they proposed use

Protein structure prediction is one of the central prob-
lems in bioinformatics and computational biology,
and various approaches have so far been proposed.
Secondary structure prediction is one of the major
approaches. It asks which type of secondary struc-
ture (a-helix, (-strand, or others) each residue be-
longs to. Since it is a kind of classification prob-
lem, various machine learning and pattern recogni-
tion techniques have been applied, including hid-
den Markov models [2, 11], logic programming [14],
neural networks [15], stochastic tree grammars [1]
and support vector machines [8]. Although the over-
all prediction accuracy of existing methods is around
75% [12], it is recognized that 3-strand regions are
more difficult to predict than a-helix regions. This
discrepancy may come from the fact that 3-sheet
structures typically range over several discontinuous
regions, whereas a-helices are continuous and thus
depend more on local sequence patterns.

Recently, Chiang et al. [5] proposed some
grammar-based methods for protein secondary struc-

of range concatenation grammar (RCG) [3] for 3-
sheet modeling. They suggested that linearly or-
dered [(-sheets can be modeled by using a simple
RCG and can be predicted in O(n®) time, where
n is the number of residues in a given protein se-
quence. They also suggested that S-barrels and more
complex (-sheet structures can be modeled by us-
ing RCG, while the time complexity increases to
O(n") ~ O(n'?) depending on the complexity of
[B-sheet structures. However, they did not show
how to incorporate residue-residue interaction pref-
erences into the RCG-based methods. Furthermore,
they posed the following question for proving NP-
hardness of (-sheet prediction: “it remains to be
seen whether such dependencies might be needed,
for example, in calculating conformation counts for
[(-sheets.”

In this paper, we propose a simple and flexible dy-
namic programming algorithm for prediction of an-
tiparallel up-down (-sheets. This algorithm is based
on RCG approach [5], where no experimental results



on structure prediction were provided. It is notewor-
thy that our method explicitly takes pairwise inter-
action preferences into account and thus can be ap-
plied to real protein sequences. Hubbard [9] also
used interstrand residue pairing preferences to pre-
dict B-strand contact maps, but did not show an orig-
inal prediction algorithm specific for 3-sheet predic-
tion. Our prediction algorithm achieved good per-
formance of overall per-residue accuracy Q3 =~ 80%
for nonhomologous protein sequences, where there
are only two secondary structural states. Although
types of (3-sheet structures that can be handled by our
method are restricted, the technique is extensible to
more complex [-sheet structures including 3-barrel.
We also provide insight into an existing grammar-
based method. Furthermore, we show that prediction
of planar -sheet structures is NP-hard. This result
gives an answer to the question posed by Chiang et
al. [5].

2 Methods

2.1 Ungapped Antiparallel 5-Sheet

[B-sheets are formed by pairwise interaction of sev-
eral (consecutive) amino acids, called 3-strands, in
parallel and/or antiparallel way. Antiparallel (-
structure is a fundamental topology of (-sheet, and
many proteins include it in their domain. Although
there are a large number of combinations of (-
strands, it is known that the number of topologies
of the class of antiparallel S-sheets is relatively few
[4]. In this section, we are concerned with the sim-
plest topology among them, called up-down (-sheet,
where all strands have antiparallel topology via hy-
drogen bonding and they are connected by hairpin. In
addition, suppose that every amino acid of 3-strands
is involved in hydrogen bonding, which we call un-
gapped [3-sheet. This assumption enables us to de-
sign more efficient prediction algorithm in terms of
computational complexity.

Let a = ajaz---a, denote an amino acid se-
quence to be analyzed. We consider an ungapped
up-down [-sheet that have N strands of the same
length L where N < |%]. The reason why we can
assume L is fixed is that we are concerned with only
ungapped (-sheets. Because of this assumption, a 3-
sheet can be represented by an N-tuple of the start
positions of B-strands (p1,p2,...,pn) in the amino
acid sequence a. Note that p; + L < p;; must be
satisfied to prevent adjacent strands from overlapping
each other. Let s : (a;,a;) — R be a score (energy)
function between two amino acid residues. Then, the
ungapped up-down (-sheet prediction problem can

be defined as follows:

Definition 1. (Ungapped up-down [-sheet predic-
tion problem)

Input: An amino acid sequence a = ajaz - - Gy,
the number of strands N, their common length L
and a score function s.
Output: An
sheet

up-down (-
minimizes

ungapped
(pl7p27"-7pN) that

N-1 .
Dim1 Zj:l 8(api+j—1,0p,41+1—;), subject to
pi+L<pit1 (i=1,2,...,N).

2.2 Dynamic Programming Algorithm

We provide a dynamic programming (DP) algorithm
for predicting ungapped up-down (-sheets. In the
experiments described later, we will predict 3-sheet
by changing the value of N, though N is fixed in the
algorithm described below. Let W (k, ) be the mini-
mum free energy of up-down J-sheet for ay - - - a;,
where j is the last position of the kth [B-strand.
W (k,j) can be calculated by the following simple
recursion formula:

Wk, 5) = min{W (k — 1,3) + 5, 4, L)}

where S(i,j, L) = Z,l;zl $(@i—L+h, @j—nt1)- The
time complexity of the DP algorithm using this recur-
sion is evaluated as O(n?3). Obviously, the algorithm
requires O(n?) space. Note that the optimal 3-sheet
itself can be constructed by a simple traceback pro-
cedure.

Although our DP algorithm can only handle un-
gapped up-down [-sheets, we can easily extend our
method to predict more complicated structures, in-
cluding consecutive parallel 3-sheets, 3-barrels as
well as gapped structures.

In order to extend the algorithm for S-barrels, we
compute the following:

W(kaj) iO) = mln{W(k - 1)i’i0) + S(i7j7 L)}
for each iy under the condition that

.. 0, ifj =i,
W(I)J)ZO):{ J 0

0o, otherwise.
Then, we compute the minimum of
L
W (N, j,io) + Y 8(aig—Lh aj—ni1)-

h=1
In this case, the time complexity increases from
O(n®) to O(n*). More complicated (-sheet struc-
tures may be treated. However, the time complex-
ity would increase as the complexity of 3-sheet in-
creases as suggested by the NP-hardness result in
Section 5.



In order to extend the algorithm for gapped an-
tiparallel 3-sheets, it is enough to modify the def-
inition of S(i,j,L) so that it denotes the score
of an optimal alignment between a;_y,1 - - - a; and
a;---a;j_r+1. Inthis case, the total time complexity
increases to O(n*). Of course, we can extend it for
prediction of gapped (-barrels. In that case, the time
complexity remains O(n?).

3 Experimental Results

3.1 Data

In our experiments on up-down (-sheet prediction,
we used real protein sequences with known structure
available in PDB_SELECT (2007) [7] as the test sets
(see Table 1). The criteria for selecting test data are
as follows: (1) The test sequences are contained in
the 25% threshold list of PDB_SELECT, where no
two proteins have more than 25% sequence identity;
(2) They have no a-helix; (3) They have at least four
[B-strands specified in DSSP [10]. Note that we do
not count a residue involved in an isolated (G-bridge
as one strand; (4) All but at most one pair of adjacent
[B-strands in the primary sequence are involved in hy-
drogen bonding. This constraint results from lack of
a perfect set of up-down [-sheets in the list.

3.2 Tests

Since the sequences selected above actually have dif-
ferent strand lengths, we set the strand length con-
stant L by rounding the mean of their actual lengths.
We used a contact potential table derived from 785
proteins described in [6] as the score function s. Im-
plementation of the prediction algorithm was carried
out in Java (version 1.6.0_03) on a machine with In-
tel Core2 CPU 6700 2.66GHz, 1.57GHz and 2.99GB
RAM. To evaluate prediction accuracy of our algo-
rithm, we measured per-residue accuracy Q3, Qg
and Q%% Qs is the ratio of correctly predicted
residues in overall secondary structural elements.
Note that there are only two secondary structural
states in this case (i.e., strand and other), and ob-
served structures that we referred to are specified in
DSSP. Qg is defined as the ratio of the number of
correctly predicted residues of the 3-strands to the to-
tal number of residues of the strands in the observed
structure, which corresponds to sensitivity. Q’gcd,
corresponding to specificity, is the ratio of the num-
ber of correctly predicted residues of the 8-strands to
the total number of predicted residues of the strands.
Prediction results are shown in Table 1. Computation
time is fairly short (0.56 seconds on average).

Table 1: Accuracy of up-down S-sheet prediction.

PDBID N n L Q3[% Qrl%l Q¥i(%
2B9K 4 47 7 72.34 71.78 75.00
1AUU 4 55 4 83.64 70.59 75.00
INY4 4 82 6 84.15 72.00 75.00
1TPN 5 50 4 68.00 61.11 55.00
2E6Z 5 59 4 74.58 61.90 65.00
2DIG 5 68 5 82.35 74.07 80.00
2JN4 6 66 5 87.88 89.29 83.33
2BT9 8 90 8 80.00 88.33 82.81
1G90 8 176 11 82.39 81.32 84.09

Average 79.48 75.15 75.03

4 Remarks on Grammatical

Modeling

4.1 Definitions

Range concatenation grammar [3] is defined as a
deductive system on sequences. A (positive) range
concatenation grammar (RCG) is a 5-tuple G =
(N,T,V,P,S), where N, T,V and P are finite sets
of predicate names, terminals, variables, rules, re-
spectively, and S € N is the start predicate. For
each predicate name A € N, a nonnegative inte-
ger dim(A) is specified. Each rule in P has the
shape 19 — 1 ---1g. This rule means that 1
holds when all of 91, ..., hold. Each v; (0 <
i < k) in the rule is a predicate of the shape
Ai(it, - - -, 0 dim(4;)), Where A; € N and each
ai; (1 < j < dim(4;)) is just a variable in V if
1 < i < k. If every variable occurs at most once in
the left-hand side (rsp. right-hand side) of a rule, the
rule is called left linear (rsp. right linear). Let = de-
note the one-step derivation relation and let 2 denote
the transitive closure of =-. The language generated

by an RCG G is {w | S(w) = €}.

4.2 Modeling by RCG

Chiang et al. [5] presented the following RCG to gen-
erate linearly ordered (-sheets:

Beta(zy) — B(z,y), B(zyz,y')

— B(z,y)Adj(y,v),
B(yz,y") — Adj(y,v),
Adj(z,y) — Anti(z, y),

Anti(az,ya) — Anti(z,y),

Adj(z,y) — Par(z,y),
Anti(e, €) — €,

Par(ax,ay) — Par(z,y), Par(e,e) — e,

where a, @ € T stand for amino acid residues that are
connected with each other by hydrogen bond. (We
extend the notion @ for a sequence u.) Par and
Anti generate parallel and antiparallel strands, re-
spectively. B(u,v) means that uv is a -sheet where



the second argument v is the “last” strand. Thus,
the second rule says that if zy is a §-sheet (with y
the last strand) and (y, y’) constitutes a pair of adja-
cent strands, then zyzy’ is also a S-sheet (with 3’ the
last strand) for an unpaired subsequence z. In this
rule, the right nonlinearity plays a crucial role that
expresses the constraints that the last strand y should
be one component y of pair strands (y, y’). The time
complexity of the structure prediction based on pars-
ing of RCG is easily derived by counting the inde-
pendent positions that appear in the arguments of the
left-hand side for each rule, and taking the maximum
of them. For example, the independent positions are
marked by *; (1 < ¢ < 5) for the second rule as
B(4yTxyYx3Zes>Yug ). This is the maximum among
all the above rules, thus the complexity is O(n®)
where n is the length of an input sequence.

Returning to the problem of this paper, we assume
that the length of each strand is L. This means that
ly] = |¥'| = L in the second rule, implying that
the position *3 and x5 is determined by *2 and x4,
respectively. Thus, the time complexity becomes
O(n3), which is the same order as our algorithm in
Section 2. Note that the formalism in [5] does not
incorporate residue-residue interaction preferences.
Implementation or experimental results on (-sheet
prediction based on RCG has not been reported as
far as the authors know. On the other hand, we have
performed experiments with real protein sequences.
Although our algorithm currently considers only an-
tiparallel -sheets, it is not difficult to extend our pro-
posed algorithm so that parallel structures and other
complicated structures can be treated, as described in
Section 2.2.

5 Hardness Result

Although we have presented an O(n?) time dynamic
programming algorithm in Section 2, it remains a
question whether generalized ungapped (3-sheets can
be predicted in polynomial time or not. To discuss
the complexity of such a prediction problem, we de-
fine the corresponding decision problem as follows:

Definition 2. (Ungapped 3-sheet prediction prob-
lem, UGBETA)

Input: An amino acid sequence, a topology diagram
and a real number e.

Output: “Yes” if and only if there exists an un-
gapped (-sheet with some free energy e or less.

We can show that UGBETA is NP-complete by
reducing the longest common subsequence problem
that is known to be NP-complete [13], but omit a de-
tailed proof as space is limited.

Definition 3. (Longest common subsequence
problem, LCS)

Input: m sequences over an alphabet and a positive
integer k.

Output: “Yes” if and only if there exists a common
subsequence of length k or more, which is not neces-
sarily consecutive.

Theorem 1. UGBETA is NP-complete even if the
topology diagram is planar. O
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