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Two-phase search (TPS) method: Nonbiased and efficient parameter search for
dynamic models of biochemical networks

Kazuhiro Maeda and Hiroyuki Kurata
Department of Bioscience and Bioinformatics, Kyushu Institute of Technology

Dynamic simulations are essential for understanding the mechanism of how biochemical networks gener-
ate robust properties to environmental stresses or genetic changes. However, typical dynamic modeling
and analysis yield only local properties regarding a particular choice of plausible values of kinetic pa-
rameters. Global and firm analyses are needed that consider how the changes in parameter values affect
the results. A typical solution is to systematically analyze the dynamic behaviors in large parameter space
by searching all plausible parameter values without any biases. In this paper, we propose the two-phase
search method that consists of a random search and an evolutionary search to effectively explore all pos-
sible solution vectors of kinetic parameters satisfying the target dynamics. It enables a nonbiased and
high-speed parameter search for dynamic models of biochemical networks.

1 Introduction

Computer simulations enable one to capture dynamic
behavior of complex biochemical networks. In prin-
ciple, both molecular network architecture and the
values of kinetic parameters determine the dynamic
behavior of systems. In biology, molecular network
structures are being built, but it is still hard to meas-
ure the accurate values of kinetic parameters in vivo
due to experimental complexity. In many studies, a
particular set of local kinetic parameters has been
determined for convenience so that dynamic models
reproduce target data. Thus, the simulated results
sometimes depend on the values of kinetic parame-
ters, or reflect only local view of the system. There
have been only a few simulation methods that exten-
sively investigated how a systematic change in the
parameter values alters the prediction of dynamic
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behaviors [1, 2]. These random or systematic
searches are a great step for approaching to global
analysis, but they restricted the search space of pa-
rameters or the size of models due to calculation
complexity.

To overcome the problems, we developed an effi-
cient search algorithm, the two-phase search (TPS)
method that smoothly combines a random search
with an evolutionary search to achieve both nonbi-
ased and high-speed searches. To demonstrate the
feasibility of this method, we apply it to benchmark
problems and reveal the performance of it in terms of
the efficiency and solution distributions. Finally, the
effectiveness of the proposed method is verified
through the parameter search of the E. coli heat shock
response model.



2 Methods

2.1 Numerical optimization for dynamic
models

Generally a dynamic model for biochemical networks
is formulated by differential-algebraic equations
(DAEs). Numerical optimization for a dynamic
model is used to estimate the values of kinetic pa-
rameters so that the model reproduces the behaviors
of the existing experimental data [3]. A certain fitness
function is necessary to characterize the degree to
which the model reproduces the target experimental
behaviors.

2.2 Two-phase search (TPS) method

Since biological data contain different types of errors,
it is meaningless to seek a global minimum for the
fitness function defined for a given dynamic model.
The objective in this study is not to find such a global
minimum, but to explore all possible plausible solu-
tions of kinetic parameter vectors that produce the
target dynamics.

The TPS method is proposed that combines a ran-

dom search with a search by genetic algorithms
(GAs), as shown in Figure 1. First, the random
search explores a large parameter space without any
biases to find a coarse solution showing a good fit-
ness value. In this phase, it is not necessary to find
any solutions providing lowest fitness values. Note
that a lower value of fitness is better in this search.
The resultant coarse solution is employed to generate
the initial populations for the subsequent search by
GAs. Second, after the initial population is created
around the coarse solution vectors, use of GAs inten-
sively searches all plausible solution vectors that
show a low fitness value or provide the target fea-
tures. This two-phase search is iterated to obtain the
sufficient number of the plausible solutions. The i-th
resultant solution vector of kinetic parameters P(i)
is given by:
P() =(pG, 1), p(i2),p@i3),....... ,p(i,N)), (1)
where p(i, j)is the value of the j-th parameter of the
i-th solution vector and N is the number of search
parameters.

The TPS method has two critical control parame-
ters: The allowable error for the coarse solution
(AEC) obtained by a random search in the first phase
and the region of initial population for the search by
GAs (RIG) in the second phase. The end condition of
the first phase search for a coarse solution is provided
by:

Fitness < AEC . ?2)
The end condition of the second phase search for a
plausible or final solution is given by:

Fitness < AE , 3)
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Figure 1: A flow chart for TPS that consists of a
random search (the first phase) and a search by
GAs (the second phase)

where AE is the allowable error of the plausible solu-
tion (AE < AEC). The initial population for the GA
search is randomly generated within the hypercube
whose length of the edges is RIG and whose centroid
is the coarse solution in the first phase.

2.3 Characterization of the solutions

Three standards are defined to characterize the search
results, the number of evaluation necessary for ob-
taining a given number of the final solutions (EVA),
the centroid vector (CRV) and standard deviations
vector (SDV) for the solutions. The CRV and SDV
characterize the distribution profile for the parameter
solution vector, is defined by:

CRV =(c(1),¢(2),....c(N)), ©
SDV =(sd(1),sd(2),...sd(N)), (5

where,
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and M is the number of solutions. A small value of

EVA indicates an efficient or high-speed search. A



Table 1: Benchmark functions

Objective function Search region Allowable error (AE)
n-1
Rosenbrock  f(x)=> [100(,\:,.+1 —x? )2 +(x, —1) ] -2.048<x, <2.048 0.676
i=1
1(x) —-X, + ,/xzz +4xx, N 0.02<x, <200 0.0001
ANFM )=} -
2 0.01<x, <100 ’
Table 2: Search performance by RS, SGA, and TPS
Presented data by TPS are best cases in our experiments.
CRV SDV
EVA
c(1) c(2) sd(1) sd(2)
RS 9.57x10° 8.71x10°! 8.68x101  3.29x10"  5.67x10!
Rosenbrock  SGA 9.51x10° 6.59x107! 537x1010  3.22x10"  4.82x10!
TPS 8.96x10° 8.61x10! 8.53x101  3.33x101  5.69x10!
RS 3.09x108 1.51x10! 7.45 2.26x10! 1.76x10!
ANFM SGA 5.64x10¢ 5.70 2.59 8.67 6.24
TPS 2.37x10¢ 1.50x10! 7.70 2.25x10! 1.78x10!

search can be regarded nonbiased, when two stan-
dards of CRV and SDV are close to those in a random
search.

2.4 Experiments

In order to demonstrate the feasibility of the TPS
method, we designed a test problem. We applied it to
five benchmark functions to search different solution
vectors that give a smaller fitness value than a de-
fined AE and investigated how the two control pa-
rameters, AEC and RIG, affect the search perform-
ance of EVA, CRV, and SDV. In Table 1, only two
benchmark functions are shown. ANFM benchmark
is our original function based on a typical biological
model with an autogenous negative feedback model.
The TPS method aims at both high-speed and nonbi-
ased searches. Therefore, TPS is expected to achieve
a smaller EVA than that by a random search and to
provide the same CRV and SDV as those by a ran-
dom search. Three types of the searches: a random
search (RS), a search by GAs (SGA), and the TPS
method, were iterated until the number of the solu-
tions reaches to 10,000. RS and SGA were performed
as controls. In SGA, one search was stopped when a
solution was obtained or the search reached to the
maximum generation. For the next search, the initial
population was newly generated.

To verify the effectiveness of TPS, we applied it
to parameter search of a dynamic model of the E. coli
heat shock response [4]. Heat shock denatures or un-
folds proteins, compromising cellular function. To

counter heat shock, heat-shock proteins (hsps), chap-
erones and protease, are produced to refold the dena-
tured proteins to their native state and to degrade
them. The regulation of the synthesis, degradation,
and activity of the o ** factor plays a major role in
heat shock response. We designed fitness function to
capture behavior of ¢ ** concentration and refold-
ing ability. In the heat shock response model 11
binding constants were searched. The searches are
iterated until the number of solutions reaches to 1000.

3 Results and Discussion

3.1 TPS application to benchmark functions
The results for the Rosenbrock and ANFM bench-
mark functions are summarized in Table 2. In both
Rosenbrock and ANFM, the CRV and SDV of SGA
are different from those of RS, indicating that the
solutions by SGA are biased. On the other hand,
when AEC and RIG were well-designed, TPS pro-
vided the CRV and SDV close to those of RS. While
the EVA value by the well-designed TPS was 94% of
that of RS for Rosenbrock, it was 0.8% of that of RS
for ANFM (Table 2). TPS showed a high efficiency
for the ANFM function.

AEC is the critical control parameter that deter-
mines which search TPS becomes close to, RS or
SGA. With the increase in AEC, the performance of
TPS changes from RS to SGA. On the other hand,
with an increase in RIG, the TPS method extends the
region for the search in its second phase. The TPS
method with a small AEC approaches to RS regard-



Table 3: EVA for the heat shock response

model
EVA
RS 245x10°
SGA 1.75x10°
TPS 9.22 x10%
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Figure 2: Solution distribution properties of three
types of searches.

(A) CRV. (B) SDV. The searches were performed
by RS (O), SGA (X), TPS (A).

less of the value of RIG. In this case, the value of
EVA is large while nonbiased search is performed.
When the value of AEC is not small, RIG affects the
performance of TPS. When the values of AEC and
RIG are adequately large, the performance of TPS is
approximately the same as that of SGA. Thus, TPS
achieves a small EVA, but the CRV and SDV are
away from those of RS. The combination of a large
AEC and a small RIG moves the TPS method far
away from both RS and SGA. This search spends an
enormous computational time, which is sometimes
larger than that of RS and provides a different solu-
tion distribution from that of both RS and SGA.

3.2 Application to the heat shock response

The results are summarized in Table 3 and Figure 2.
The CRVs and SDVs were calculated in logarithmic
space. The TPS method reduced the EVA value to
38% of that of RS and 53% of SGA (Table 3). While
the CRVs were approximately the same for three
searches (Figure 2A), the SDVs of SGA were
smaller than those of RS (Figure 2B), indicating that
SGA was biased. By contrast, the SDV distribution
by the TPS method was approximately the same as
that of RS, indicating that the solution distribution by
TPS is non-biased. TPS carried out high-speed and
nonbiased searches for the heat shock response.

The heat shock response model and the ANFM
benchmark function are built based on molecular ki-
netics. The search results for both the biological
models are much better in terms of calculation effi-
ciency than those of the typical benchmark functions
such as Rosenbrock. The landscape of the search
space in both the biological models seems to differ
from that of the typical benchmark functions. The

TPS method is suggested to be suitable for search
problems based on molecular kinetics.

4 Conclusion

We propose the TPS method that consists of a ran-
dom search and an evolutionary search to effectively
explore all possible solution vectors of kinetic pa-
rameters satisfying the target dynamics, which
greatly enhances the search efficiency without any
biases in biological problems. The proposed method
enables one to approach to global and firm analyses
that consider how the changes in parameter values
affect the results. We investigated the effects of two
critical control parameters, AEC and RIG, for the TPS
method on search performance. When an appropriate
value of AEC is selected, which depends on target
functions, a small value of RIG enables the TPS
method to achieve both high-speed and nonbiased
searches. The TPS method does not show so high
performance for typically-employed benchmark
functions, but provides a great advantage in dynamic
models of protein synthesis. The effectiveness of the
TPS method for biochemical networks is verified
thorough parameter search of the heat shock response
model.
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