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e-Ranking for Effective Many Objective Optimization on MNK -Landscapes
Hernan Aguirre® and Kiyoshi Tanaka*

This work proposes a method to enhance selection of multiobjective evolutionary algorithms aiming to improve
their performance on many objective optimization problems. The proposed method uses a randomized sampling
procedure combined with e-dominance to fine grain the ranking of solutions after they have been ranked by Pareto
dominance. The sampling procedure chooses a subset of initially equal ranked solutions to give them selective
advantage, favoring a good distribution of the sample based on dominance regions wider than conventional Pareto
dominance. We enhance NSGA-II with the proposed method and test its performance on a wide range of non-linear
problems using MNK-Landscapes with up to M/ = 10 objectives. Experimental results show that convergence and
diversity of the solutions found can improve remarkably on 3 < M < 10 objective problems.

1. Introduction lective advantage, favoring a good distribution of the
sample based on dominance regions wider than con-
ventional Pareto dominance. Thus, the proposed rank-
ing method increases selection probabilities of some
of the solutions, while trying to keep a uniform search
effort towards the different zones of objective space
represented in the actual population.

We enhance NSGA-II [1] with the proposed method
and test its performance on a broad range of sub-
classes of combinatorial non-linear problems, using
MNK-Landscapes [2] with 2 < M < 10 objectives
and 0 < K < 50 epistatic interactions per bit. Ex-
perimental results show that convergence and diver-
sity of the solutions found can improve remarkably on
3 < M < 10 objectives for all K by properly setting
the parameter ¢ that determines the domination region
of the sampled solutions.

Multiobjective evolutionary algorithms (MOEAs)[1]
optimize simultaneously two or more objective func-
tions, aiming to find a set of compromised Pareto op-
timal solutions in a single run of the algorithm. Re-
cently, there is a growing interest on applying MOEAs
to solve many objectives optimization problems, where
the number of objectives to optimize is more than
three. However, state of the art MOEAs that use Pareto
dominance within the selection procedure of the algo-
rithm do not scale-up well on many objective prob-
lems. An important reason for this is that Pareto selec-
tion loses its discriminatory power by increasing the
dimensionality of the objective space, severely deteri-
orating the performance of MOEAs [2].

In this work, we propose a method to enhance selec-
tion of MOEAs aiming to improve their performance
on many objective optimization problems. The pro-
posed method uses a randomized sampling procedure
combined with e-dominance [3] to fine grain the rank-
ing of solutions after they have been ranked by Pareto
dominance. The sampling procedure chooses a sub-
set of initially equal ranked solutions to give them se-
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2. Definitions

Let us consider a maximization multiobjective prob-
lem with M objectives:

f@) = (@), fal2), - fu(2)) (D)
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where € S is a solution vector in the feasible so-
lution space S, and f1(-), f2(:), - -+, fas(+) the M ob-
jectives to be maximized. Pareto dominance and e-
dominance [3] are defined as follows.



Pareto dominance. A solution x is said to Pareto
dominate other solution y if the two following condi-
tions are satisfied:

Vme{la"' aM} fm(m)me(y) A (2)
Ime{l,-- , M} fu(x) > fu(y)-

Here, x dominates y is denoted by f(x) = f(y).

e-dominance. A solution x is said to ¢-dominate
other solution y if the two following conditions are
satisfied:

Vme{l’“' ’M} (1+5)fm(m)2fm(y) A (3)
Im € {1"" 7M} (1 + 6)fm(m) > fm(y)'

where ¢ > 0.0. Here, x e-dominates y is denoted by

f(=) =€ f(y).

3. Method

The core of the proposed method is a randomized e-
sampling procedure. In the following, we first explain
e-sampling and then e-ranking to fine grain ranking of
solutions.

3.1 e-sampling

e-sampling assumes that there is a set of equally ranked
solutions from which a subset of them should be cho-
sen to be given selective advantage in order to pro-
ceed further with the evolutionary search. Hence, the
sampling heuristic must reflect criteria that favor an
effective search. Here, the sample of solutions to be
given selective advantage are obtained with the follow-
ing criteria,
o Extreme solutions are always part of the sample.
e Each (not extreme) sampled solution is the sole
sampled representative of its area of influence.
The area of influence of the sampled solutions
is determined by a domination region wider than
Pareto dominance, i.e. e-dominance.
e Sampling of (not extreme) solutions follows a
random schedule.

The first criterion tries to push the search towards
the optimum values of each fitness function, aiming
to find non-dominated solutions in a wide area of ob-
jective space. The second criterion assures that only
one solution in a given zone of objective space is
given higher rank, trying to distribute the search effort
more or less uniformly among the different zones rep-
resented in the actual population. The third criterion
dynamically establishes the zones that are represented
in the sample. Also, in the case that there are several
solutions within each zone, it increases the likelihood
that the sampled solutions that will be given higher
rank are different from one generation to the next, in-
creasing the possibility of exploring wider areas of ob-
jective and variable space.

Procedure 1 illustrates the algorithm of the pro-
posed e-sampling method. Let us denote A the set of
solutions that have been assigned the same rank based
on conventional Pareto dominance. e-sampling returns
the sampled solutions S C A that will be given se-
lective advantage as well as the set of solutions D¢ to
be demoted. See that extreme solutions are the first
to be assigned to the sample S (lines 1,2). Then, one
by one, solutions are randomly chosen and included in
S (lines 4-6), whereas solutions that lie in the wider
domination region of the randomly picked solution are
assigned to D¢ (lines 7,8). Note that solutions in D¢
are e-dominated by solutions in S, i.e. parameter ¢
is used to virtually expand the dominance area of the
sampled solutions in order not to include closely lo-
cated solutions in the sample.

Procedure 1 e-sampling (¢, A, S, D¢)
Input: e-dominance factor ¢ and a set of equal
ranked solutions .A

Output: S and D¢ (S U D¢ = A). S contains ex-
treme and e-non-dominated solutions, whereas
D¢ contains e-dominated solutions

X — {z € A| frm(z) = max(f (")), m =
1,2,--- ,M}

228X, A= A\X,D¢ 0
3: while A # 0 do

4: r«rand(),1 <r < |A|

5: z « r-th solution € A

6: S<—SU{Z}

7: Ye—{yeA|lz=y,z#y}
8: D¢ —DUY

9: A— A\ {{z} U}

10: end while

11: return

3.2 e-ranking

e-sampling works on a set of equal ranked solutions.
However, within a population there could be several
sets of such solutions, each with a different rank. e-
ranking re-ranks all sets of equal ranked solutions us-
ing e-sampling. In NSGA-II, a non-domination sorting
procedure is applied to the joined population of par-
ents and offspring to classify solutions in fronts of non-
dominated solutions F; (: = 1,--- , Ng). Solutions in
the same front are assigned the same rank, equal to the
front number they belong to.

e-ranking in NSGA-II is applied at each generation
after non-domination sorting to reclassify the fronts F;
(i=1,---,Np)into F¢ = {Ff} (1= 1,2,--- ,Np),
where N, > Np. Procedure 2 describes the e-
ranking method. See that the reclassified front 77
(j =1,---,N§) now contains only the sample of so-
lutions S C F; found by e-sampling (lines 9,10). Also,
see that solutions D¢, which are not part of the sample



(line 9) are demoted by joining them with solutions of
an inferior front in the next iteration of the loop (line
4). Thus, F; contains some of the solutions initially
ranked first, but F5,3 > 1, can contain solutions that
initially were ranked in different fronts.

Procedure 2 e-ranking (e, F, F¢)

Input: e-dominance factor e and solutions F clas-
sified in fronts ; (¢ = 1,---, Np) by non-
domination sorting

Output: 7, solutions re-classified in fronts 77
(J=1,---,Njy) after e-sampling

LD 051,71
2: repeat

3 if i < N then
4 A — F,UD*
5: t—1+1
6 else

7 A~ D¢

8 end if

9: e-sampling(e, A, S, D¢)
10: Fi<S

11: je—Jj+1

12: until D¢ =

13: return

The new ranking of solutions obtained with ¢-
ranking is reflected in the selection procedure of the
algorithm, both during population truncation to obtain
the new parent population and during mating to obtain
the new offspring population by means of recombina-
tion and mutation.

4. Test Problems, Performance Measures
and Parameters

In this work we test the performance of the algo-
rithms on multiobjective MNK-Landscapes. A mul-
tiobjective MNK-Landscape [2] is defined as a vec-
tor function mapping binary strings into real numbers
FC)=(H0), L0), -, fu()) BN — RM where
M is the number of objectives, f;(-) is the i-th ob-
jective function, B = {0,1}, and N is the bit string
length. K = {Ki,---, Ku} is a set of integers
where K; (¢ = 1,2,---, M) is the number of bits in
the string that epistatically interact with each bit in the
i-th landscape. Each f;(-) is a non-linear function of
x expressed by a Kauffman’s NK-Landscape model of
epistatic interactions.

We use the hypervolume H and coverage C mea-
sures [4] to evaluate and compare the performance of
the algorithms. The measure H calculates the vol-
ume of the M-dimensional region in objective space
enclosed by a set of non-dominated solutions and a
dominated reference point. In this work, the refer-
ence point is set to [0.0,---,0.0]. Given two sets of

non-dominated solutions A and B, if H(A) > H(B)
then set A can be considered better on convergence
and/or diversity of solutions. The coverage C mea-
sure [4] provides complementary information on con-
vergence. Given two sets of non-dominated solutions
A and B, C(A, B) gives the fraction of solutions in B
that are dominated at least by one solution in A. Usu-
ally C(A, B) + C(B,A) # 1.0, so both C(A, B) and
C(B, A) are required to understand the degree to which
solutions of one set dominate solutions of the other set.

In our experiments we use MNK-Landscapes
with 2 < M < 10 objectives, N =
100 bits, number of epistatic interactions K =
{0,1,3,5,10,15,25,35,50} (K1, ---,Km = K),
and random epistatic patterns among bits for all ob-
jectives. Results presented below show the average
performance of the algorithms on 50 different prob-
lems randomly generated for each combination of M,
N and K. In the plots, error bars show 95% confidence
intervals on the mean.

The MOEAs use parent and offspring populations of
size 100, two point crossover for recombination with
rate p. = 0.6, and bit flipping mutation with rate p,,, =
1/N per bit. The number of evaluations is set to 3 x
10%. Parameter ¢ for e-ranking is swept in the range
[0.5,10.0] (%) on intervals of 0.5.

5. Experimental Results and Discussion

In this section, we discuss the relative gains on perfor-
mance by e-ranking set with €* that achieves maximum
hypervolume H. Fig. 1 shows the average ratio ;{gf,)) s
where E and NV denote the set of solutions found by
the enhanced NSGA-II with e-ranking (referred as e-
ranking for short) and conventional NSGA-II, respec-
tively. As a reference, we include a horizontal line to
represent the H (V) values normalized to 1.0. From
this figure, we can see that e-ranking can slightly im-
prove H on problems with M = 2 and M = 3 objec-
tives for some values of K (4% improvement or less).
On the other hand, for 4 < M < 10 objectives, the
improvement on H is remarkable for most values of
K (up to 27% improvement). Note that improvements
on H become larger as we increase the number of ob-
jectives M from 2 to 6, whereas improvements on H
are similar for 7 < M < 10.

Improvements on H can be due to solutions with
better convergence, better diversity, or both. To com-
plement the analyzes of results on H we also present
results using the C measure. Fig. 2 shows the average
C values between conventional NSGA-II and e-ranking
set with ¢*. From this figure, we can be see that
C(E, N) is slightly smaller than C(N, E) for M = 2
and K < 10, which means that convergence is some-
what worse by e-ranking than conventional NSGA-II.
Thus, the slight improvement on H by e-ranking, ob-
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Figure 1: Normalized H, e-ranking set with ¢* that achieves maximum H(FE).
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Figure 2: C between NSGA-II and e-ranking set with €* that achieves maximum H(E).

served in the same region M = 2and 0 < K < 10 as
shown in Fig. 1, is at the expense of a slight deteriora-
tion on convergence. In the case of M = 3 objectives,
we can see that C(E, N) is considerably greater than
C(N,E) for 0 < K < 25, which means that conver-
gence is better by e-ranking than conventional NSGA-
II. Thus, we can conclude that a better convergence
of solutions contributes to the improvement on H by
e-ranking, as shown in Fig. 1 for 0 < K < 25.

For4 < M < 10 aclear trend can be seen. C(N, E)
is close to 0.0 for most K and M. This indicates that
there are almost no solutions by conventional NSGA-
11 that dominate solutions by e-ranking. On the other
hand, the values of C(E, N) are very high for 4 objec-
tives (in the range 0.55-0.85) and reduce gradually as
we increase M up to 10 objectives (in the range 0.01-
0.08). This suggests that a better convergence of so-
lutions contributes to the increases of H by e-ranking
on M = 4 problems. As we increase M, gains on di-
versity gradually become more significant than gains
on convergence as the reason for the remarkable im-
provement of Hon 5 < M < 10.

6. Conclusions

In this work, we have proposed e-ranking to enhance
selection of MOEAs aiming to improve their perfor-
mance on many objectives problems. The proposed
method uses a randomized sampling procedure to in-
crease selection probabilities of some of the solutions,

while trying to keep a uniform search effort towards
the different zones of objective space represented in
the instantaneous population. We enhanced NSGA-II
with the proposed method showing that convergence
and diversity of the obtained solutions can improve re-
markably on MNK-Landscapes with 3 < M < 10
objectives and 0 < K < 50 epistatic interactions per
bit. As future works, we would like pursue adaptive
methods to control the parameter e.
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