
 1

Learning for the Value of Moves by Iteration of Generation of Decision Tree in Go

ABE Nobuharu KOTANI Yoshiyuki

Tokyo University of Agriculture and Technology
{ abe, kotani } @fairy.ei.tuat.ac.jp

Abstract
 It is necessary in a game "Go" to limit candidates of moves for searching because the total number of

possible moves of a position exceeds 200 on an average. We performed the generation of candidate moves

by the decision tree in the past. We got the features around an empty point which could be selected (legal

move), using not a pattern but the information about the stone which was in the circumference of

selected moves or the coordinates of selected moves from a professional Go player's record. In this paper,

first, we generate the decision tree, collect data using generated decision trees, then generate new

decision trees. A decision tree is improved by repeating. An evaluation of our method is shown

correspondence between our system's optimal candidates and actual moves made by professional Go

players. As a result, the number of candidate moves until actual moves appeared was an average of

21.96.

１．Introduction

 It is hard to decide a move by only searching in a game Go. The reason is that an average of branch

factors of a game tree in Go is more than 200. This is one of reason that computer Go cannot be strong as

computer CHESS and SHOGI. And there is a problem that computer Go program cannot understand

thinking of human player. But it is possible that a computer generate promising candidate move without

understanding thought of human player [1]. We got simple features on a board as data from professional

Go player ’s records and performed learning the value of moves using decision tree in past [2]. This

method could generate candidate moves without complex calculation and huge pattern database. We

focused static evaluation from opening to middle game.

 In this paper, we use decision tree already generated to collecting data and generate new decision tree.

We use both of them to selection candidate moves. Moreover we use them to collecting data and generate

new decision trees … repeating this way, we try to improve candidate move generated by decision trees.

２．Learning for the moves using decision tree

 It is the method that set some information to measure the value of a move and the information

collected from professional player’s records generates a decision tree. An evaluation is corresponding

between optimal candidates by the output of decision tree and actual moves made by professional

players.

２.１ Learned Moves

 When human plays Go, they consider various things in deciding move. For example, if capture

研究会Temp
ゲ　ー　ム　情　報　学

研究会Temp
８－８

研究会Temp
（２００２． ７． ２４）

研究会Temp
－53－

 2

opponent’s large stones, if escape friend’s stones which is likely to be captured, if increase friend’s

territory or decrease opponent’s territory, and so on. Their purpose is clearness. While, the purpose of

such moves that is attack move, defend move, KESHI, KIKASHI, etc. does not be recognized clearly.

 Computer can understand former moves using capture search and so on. But, because of deferent

opinion between people about later moves programming is hard. So for move, we make computer convert

the move: “cannot know what attempt but, quality as the move is high” into value of move. This will

enable to generate promising candidate move without attempt or intent of human. In this paper we

particularly consider from opening to middle game.

２.２ Information of circumference

 When human player decide a move, they consider circumferences of the move. For instance, where

many opponents’ stone is placed around they select a move that tend to life. By contrast where many

friends’ stone is placed, they select a move that attack hardily. If there are friend’ stones placed in line 1,

three-space jump is possible and so on. If computer have enable to understand these circumference, it

seems that it can play the move as same as human player. In this paper, for this circumference we use a

coordinate of move and the information of stones around the move.

 We deem stones on all sides to be stones around the move. We do not think diagonal direction since

relation with lengthwise and crosswise is taken more important than relation with diagonal direction.

When the four-quarter is seen, have one width. For stones on all sides, we use one unit of stone that is

string (a set of adjacent stones of one color) connected by KOSUMI (diagonal). We call this unit

“KOSUMI-STRING” [3]. Figure 1 shows information about KOSUMI-STRINGS. (o) relation is shown in

Figure 2. Other information is shown in Figure 3, and we treat these information as circumferences.

 Necessary description to information is the following. (e) discerption point : when there is a connected

point by KOSUMI and one point is occupy by opponent’s stones, other empty point is discerption point. It

is concern with possibility disconnection. (g)～(k) around : space to two Manhattan distance from each

stone which construct KOSUMI-STRING. (l)～(n) height : distance from border. In 19-by-19 board height

is 1 to 10. (3) Potential value: a kind of influence that each stones radiate.

 Furthermore we do not consider life-death for KOSUMI-STRING. Because life-death judging is

impossible when too many stone or too few stone. Considering Go’s symmetry, a board is divided into

eight.

研究会Temp
－54－

 3

A
D D
F F
Ｈ Ｈ
Ｈ Ｈ
Ｈ Ｈ

Ｈ Ｈ Ｈ F D

Ｈ Ｈ Ｈ F

B Ｈ

Ｈ

Ｈ Ｈ

D C D
F E F
Ｈ Ｇ Ｈ
Ｈ Ｈ Ｈ

Ｈ Ｈ Ｈ
Ｈ Ｈ Ｈ

C
E
Ｇ
Ｈ
Ｈ
Ｈ

Ｈ Ｈ Ｇ Ｅ C Ｈ C E Ｇ Ｈ Ｈ
D Ｆ Ｈ Ｈ Ｈ B

D B D F Ｈ Ｈ Ｈ B A
A A Ｈ

Ｈ

Ｈ

Ａ）TSUKE

Ｂ）KOSUMI

Ｃ）1-KEN

Ｄ）KEIMA

Ｅ）2-KEN

Ｆ）OOGEIMA

Ｇ）3-KEN

Ｈ）OTHER

(Manhattan distance)

Figure 2 : (o) Relation with move

 (1) turn (2) height of point

(3) potential value (4) number of plies

 Figure 3: Other information

(a) Color of stones

(b) Num. of stones

(c) Length

(d) Width

(e) Num. of discerption point

(f) Num. of liberty

(g) Num. of illegal point for opponent

(h) Num. of around empty point

(i) Num. of around friend’s stone

(j) Num. of around opponent’s stone

(k) Num. of around edge

(l) Maximum height

(m) Minimum height

(n) Medial height

(o) Relation with move

 Figure 1：Information of
KOSUMI-STRING

２.３ Learning of decision tree

 To make computer understand the circumference shown chapter 2.2, we get huge data and generate

decision tree. The algorithm of the generation of decision tree used in this paper is most fundamental

algorithm ID3 [4]. Since it is not related to an essence of this research even if other algorithm is not used,

we use more simple it. The information about the circumference offered chapter 2.2 is attributes of

decision tree and whether selected move or not selected move is a class of decision tree. We collect such

data from professional player ’s records.

 At decision tree, when classes of sub set classified by a query are sameness it become a terminal. But

in this research it will suppose that it is hard for sub set to be classified one same class actually, so we

define sub set as the terminal when number of factors of sub set become less than a constant number

and make a rate of “it is selected move” an output at this case. This output value is the value of move.

 In Go, an average of number of the legal move is more than 200, and is more than 300 in opening. So a

difference between the data of “selected move” and the data “not selected move” is large and generated

decision tree is lopsided. So number of data of “not selected move” must be limited at collecting data.

 A selection of the candidate move by generated decision tree is below routine for a position.

(a) for all legal move collect data described chapter 2.2

(b) thread decision tree with each data and get the output value

(c) candidate moves are sorted from what has a high output value

３． Iterative generation of decision trees

 At collecting data for generate decision tree, not selected move are collected at random. This is why

研究会Temp
－55－

 4

data of good move and worse move are distributed moderately, and generating good decision tree is

possible. In this paper, using decision tree already generated at collecting data we try to generate better

decision tree.

 Because of a moderate data distribution, decision tree generated by random collected data have a few

performance. To get the candidate move by this decision tree as a training data, it assume that better

learning becomes possible. We suggest the method that using decision tree already generated to learning

again. The routine is shown below.

(ⅰ) read records and get data at random

(ⅱ) generate decision tree (0)

(ⅱ) read same records and get data by the candidate move outputted by decision tree (0)

(ⅲ) generate decision tree (1)

 This decision tree (1) is seemed that can select better candidate move from it bye decision tree (0). So

using both of decision tree (0) and decision tree (1), generation better candidate move will become

possible. The routine of candidate move by these two decision trees is below.

(a) get data for all legal move

(b) take each data to decision tree (0) and (1), and add each output value.

(c) the candidate move are sorted what has a high sum value.

 Generate decision tree (3), (4)… iteratively this routine(Figure 4)

Figure 4 : iteration generation decision tree

get data by random

generate decision tree(0)

i<num of iteration

y

n

start

end

i=0

i++

Generate new decision tree with
data which gotten by decision

tree(0)~(i)

４．Experiment of performance

 We collect data from professional player ’s records [5], generate decision tree iteratively and evaluate a

研究会Temp
－56－

 5

performance actually. In this research we consider only 1~50 move where from opening to middle game.

4.1 Pre-experiment

 Before generating iteration decision tree by the method observed chapter 3, we examine how does

decision tree have a capability when collecting data at random. We try to generate decision tree buy

several kinds of number of data that is “not selected move” and evaluate the performance. Following

each setup of decision tree.

・number of plies ：1～50

・number of “not selected move” ：10、20、50

・number of records ：776、776、640

・number of factor at terminal ：200

・maximum depth ：12

 Table 1 shows result of the pre-experiments. We used 50 training records and test records for

evaluation. We read records from 1 to 50 plies, thread decision tree with data from all legal move at every

move, and decide the candidate move from the high output value in order. We evaluate by number of

candidate move until it is corresponded with selected move of record and rate whose number of candidate

move until it is agreement with selected move is less than 20. Judging from result of test-data at each

setup mainly, we decide that number of “not selected move” is 50.

Table1：result of pre-experiment
Num. of to selected move Rate of num. of candidate move is less than 20

Not selected moveNum. of record
training data test data training data test data

10 776 22.274 26.024 0.6602 0.6208

20 776 23.288 27.173 0.6466 0.6140
50 640 21.961 24.719 0.6504 0.6364

4.2 Experiment

 We generate iteration decision tree using above setup, and compare performance of iteration decision

tree with it of not such tree.

4.2.1 A setup of a decision tree

 In this experiments, each setup of iteration generation decision tree is followed. To ask whether this

method depend on number of data we try to examine four kinds of record number.

・number of plies ：1～50

・number of not selected moves ：50

・number of record ：80、160、320、640

・number of factor at terminal ：200

・maximum depth ：12

・number of iteration generation ：1～20

4.2.2 The way of evaluation

 We take all legal move’s data to decision trees every position of records (for training/test) and

研究会Temp
－57－

 6

make a move whose data has a high output value the candidate move in order. And we evaluate it by

the number of candidate moves until it is corresponded with the selected move, rate of it, and rate of it is

less than 20. Note that the value of move is sum value of the output value by decision trees when

generating decision tree iteratively.

4.3 Results

 Table 2 shows the result of the experiment when the number of iteration of generation is set 3 and four

kinds of record number. Way of the evaluation is number of candidate move.

Table2：Number of candidate moves until it is corresponded with the selected move

Training data Test data
80 160 320 640 80 160 320 640

0 25.72 24.366 20.999 21.961 39.29 37.446 30.718 24.719

1 22.881 22.875 22.659 55.11 41.284 41.648 26.397 60.334
2 21.302 17.906 24.026 50.518 39.594 37.252 29.071 55.783

3 20.388 15.929 19.35 42.382 38.634 36.551 28.206 48.454

 The performance of the setup whose number of records is 640 is best when number of iteration is 0.

But as a result of iteration, record numbers 320 has best performance, so we continue to examine using

the setup whose number of record is 320. Result is shown at Figure 5~8. Figure 5 and 6 show number of

candidate moves until it is corresponded the selected move.

0
5
10
15
20
25
30
35
40
45

1 11 21 31 41
Plies

N
um
be
r
of
 c
an
di
da
te

m
ov
es

0
20

Figure 5 : Number of candidate moves at 1st-50th plies(training data)

0

10

20

30

40

50

60

70

1 11 21 31 41Plies

N
um
be
r
of
 c
an
di
da
te

m
ov
es

0
20

Figure 6 : Number of candidate moves at 1st-50th plies(test data)

 Figure 7 and 8 show rate of the selected move appear at n-th candidate moves.

Record
Iteration

研究会Temp
－58－

 7

 Table 3 illustrate result of number of the candidate moves until it is corresponded with selected move,

rate of it, and rate of it is less than 20 at iterations 0 ~ 20.

Table3：results of examination at each iterations

Num. of candidate
move

Rate that num. of candidate
move is less than 20

Num. of candidate
move

Rate that num. of candidate
move is less than 20 Iteration

Training Test Training Test
Iteration

Training Test Training Test

0 20.999 30.718 0.6852 0.5940
1 22.659 26.397 0.6652 0.6128 11 11.891 22.941 0.8300 0.6860

2 24.026 29.071 0.6468 0.5892 12 11.647 22.514 0.8348 0.6908

3 19.350 28.206 0.7424 0.6404 13 11.288 22.424 0.8440 0.6900
4 17.775 26.411 0.7576 0.6508 14 11.162 22.566 0.8392 0.6840

5 14.821 24.803 0.7756 0.6536 15 11.339 22.537 0.8292 0.6832

6 14.077 23.926 0.7792 0.6604 16 10.364 22.407 0.8492 0.6868
7 13.164 23.380 0.7996 0.6660 17 10.326 22.351 0.8500 0.6876

8 12.830 23.124 0.8036 0.6672 18 10.235 22.318 0.8480 0.6888

9 12.226 22.741 0.8144 0.6672 19 10.136 22.127 0.8480 0.6912
10 13.604 23.912 0.8172 0.6752 20 10.016 21.964 0.8504 0.6928

５．Discussions

 Our method is successful by table 3 expressed that the more number of iteration generation decision

0

0.2

0.4

0.6

0.8

1

1.2

1 21 41 61 81 101 121 141 161 181 201 221 241
Number of candidate move

R
at
e

0
20

Figure8 : Rate that n-th candidate move is coressponded selected move(test data)

0

0.2

0.4

0.6

0.8

1

1.2

1 21 41 61 81 101 121 141 161 181 201 221 241
Number of candidate move

R
at
e

0
20

Figure7 : rate that n-th candidate move is coressponded selected move(training data)

研究会Temp
－59－

 8

tree increase, the more performance of candidate move increase. Especially increase of the accuracy of

the candidate move at training data is distinguished. We assume that it is because our system gets data

from same records repeatedly. Performance of the final result exceed it of the setup that number of

records is 640 and iteration is 0, so using this method it is possible to learn enough with few number of

record or number of data.

 Best advantage is appeared at 4th or 5th plies recognized Figure 5 and 6. 4th or 5th plies are often the

move that occupy last corner points, so it is assumed that our system can learn easily. As number of plies

increase decrease of the performance is distinct at iteration 0, but at iteration 20 it is not so.

 The experiment of 640 records cannot learn well. This is thought that its cause is the setup of decision

tree. It seems that requirement that the sub-set of the data become the terminal does not depend on

number of data. However comparing the performance of first decision tree that the data collected at

random it is proportionate to number of records, so other cause is exist. As its performance is increase in

increase of iteration, if more experiment it may be success as the setup that number of record is 320.

 From Figure 5 and 6 it is illuminated that number of candidate moves is increase and decrease in

some set of move. It may express a period of episode.

 Table 3 observes that increase of performance is exiguity at over iteration 15. Because that the more

increase of decision tree, the more increase of time for the generation candidate move, it may be suitable

to stop the generation newly decision tree at temperate number.

６．Conclusions and Future Works

 We have suggested that we regard circumferences of moves as features of moves and perform learning

for the values of moves using decision trees. Using ready-made decision trees when collecting data, we

generate new decision trees 20 iteratively. The final decision trees generate candidate moves at 1st-50th

moves in professional player’s records. As a result, the number of candidate until professional’s selected

moves are emerged is 21.96 on an average and the rate of them is less than 20 is 69.28%. This result is

higher performance than candidate moves by decision tree generated by random collected data

 We will try to experiment in different setups of decision trees be independent of the size of data. And

we introduce information of the last move as a new attribute of decision tree. Since in Go, it is pointed

that the moves which are near the last moves are evaluated better, this information is effective as pauses

of episodes. We also try to use information of player ’s last moves and expect expressions of consecution of

moves. From these, perhaps the expression of a book may be possible.

 To evaluate our method, the next move problem, the result of playing system, and so on are considered.

References

[1] Sei Shinichi, Kawashima Toshiaki : The Experient of the Go-program “KATSUNARI” using
Memory-Based Reasoning，Game Programming Workshop ‘96, pp.115-122, 1996

[2] Abe Nobuharu, Kotani Yoshiyuki : Learning for the value of moves using Decision Tree in Go, Game
Programming Workshop ’01, pp.156-159, 2001.

[3] Abe Nobuharu, Kotani Yoshiyuki : Learnng the Strength of Strings using Decision tree in Go, Index
SIGNotes Game Informatics No.005, pp1-8，2001.

[4] J.R.Quinlan : Induction of decision trees, Machine Learning, 1, 81-106, 1986.
[5] BGA Software Catalogue, http://www. britgo.org/gopcres/gopcres1.html

研究会Temp
－60－

