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Abstract
There are moves that are called "forced move" in Chess and Shogi. That is
the move that force a specific move. ldeally one would extend the search
one ply for each forced moves. This almost always led to a search explosion.
Dual Credit algorithm is one of the methods which try to solve this problem.
Credit is given to each move of the first player and the second player in
the Dual Credit search. When the credit of either one increases, it is
changed into the depth, and it does search extension. We describe the
experiments that used the Dual Credit algorithm in Shogi. As a result,
increase in the number of searched nodes by the Dual Credit search is less
than 20% as to many positions, and it can guess it important move well extend.
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int DC(position p, int a , int B, int depth, float myCredit, float his Credit)
{

int count;

int score;

int i;

int sc;

float newCredit;

int extension;

if( hisCredit >= CREDIT_LIMIT){
extension = ceiling(hisCredit - CREDIT_LIMIT);
hisCredit = hisCredit - extension;
myCredit = max(myCredit - extension, 0);
depth = depth + extension;

if( depth == 0 ){ return Evaluate(p); }
score = d ;
count = GenerateSuccessors(p);
for(i=1;1i<=count ; i++ ){
sc = -DC(p.i, -B , -a , depth - 1, hisCredit, myCredit);
if( sc > score ){
newCredit = GenerateCredit();
it( newCredit > 0 ){
sc = -DC(p.i, -B , -a , depth - 1, hisCredit, myCredit + newCredit);

if( sc > score ){ score = sc; }
}

if(score >= 3 ){ return score; }

return score;
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