ooopoooooooog odd
ggoobo oo ogd

Dual Credit

go@fairy.ei.tuat.ac.jp kotani@cc.tuat.ac.jp

Dual Credit
Dual Credit

Dual Credit
Dual Credit
20

Dual Credit search in Shogi

Tsuyoshi SUZUKI Yoshiyuki KOTANI
Tokyo University of Agriculture and Technology
go@fairy.ei.tuat.ac.jp kotani@cc.tuat.ac.jp

Abstract
There are moves that are called "forced move" in Chess and Shogi. That is
the move that force a specific move. ldeally one would extend the search
one ply for each forced moves. This almost always led to a search explosion.
Dual Credit algorithm is one of the methods which try to solve this problem.
Credit is given to each move of the first player and the second player in
the Dual Credit search. When the credit of either one increases, it is
changed into the depth, and it does search extension. We describe the
experiments that used the Dual Credit algorithm in Shogi. As a result,
increase in the number of searched nodes by the Dual Credit search is less
than 20% as to many positions, and it can guess it important move well extend.

0210

研究会Temp
ゲ　ー　ム　情　報　学

研究会Temp
（２００３． ３． ２４）

研究会Temp
９－４

研究会Temp
－21－

Dual Credit
Deep Blue [1] Dual Credit

Deep Blue
Dual Credit

Dual Credit

Dual Credit [1]1

Dual Credit C ap
1 myCredit hisCredit
10 15 10 CREDIT_LIMIT

11
hisCredit CREDIT_LIMIT CREDIT_LIMIT=2
hisCredit=2.5 hisCredit=3.4
12,13 23
GenerateCredit()

0220

研究会Temp
－22－

[2]
0.5 Dual Credit GenerateCredit()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27

int DC(position p, int a , int B, int depth, float myCredit, float his Credit)
{

int count;

int score;

int i;

int sc;

float newCredit;

int extension;

if(hisCredit >= CREDIT_LIMIT){
extension = ceiling(hisCredit - CREDIT_LIMIT);
hisCredit = hisCredit - extension;
myCredit = max(myCredit - extension, 0);
depth = depth + extension;

if(depth == 0){ return Evaluate(p); }
score = d ;
count = GenerateSuccessors(p);
for(i=1;1i<=count ; i++){
sc = -DC(p.i, -B , -a , depth - 1, hisCredit, myCredit);
if(sc > score){
newCredit = GenerateCredit();
it(newCredit > 0){
sc = -DC(p.i, -B , -a , depth - 1, hisCredit, myCredit + newCredit);

if(sc > score){ score = sc; }
}

if(score >= 3){ return score; }

return score;

Dual Credit

Deep Blue

[1]

[3]

0230

研究会Temp
－23－

Dual Credit Dual Credit

afp
10
Pentium4-1.9GHz
4.1 Dual Credit ap
Dual Credit Dual Credit ap
Dual Credit ap [41
Dual Credit
62 38
Dual Credit
0 5 64 6 10 32 11 15
16 20 11 Dual Credit

Dual Credit Dual Credit

62 38 0.62

0 240

研究会Temp
－24－

Dual Credit

16-20

11-15

6-10

0-5

10 20 30 40 50 60 70
Dual Credit
4.2
Dual Credit
Dual Credit 47 53
Dual Credit
47 53 0.47
4.3
66 34
Dual Credit
66 34 0.66

0 250

[5]

研究会Temp
－25－

Dual Credit a

B
5
62
Dual Credit

47

53
66 34
Dual Credit Dual
Credit
Dual Credit
Dual Credit

Dual

Credit

[1] Campbell, M. Hoane Jr., A.J., Hsu, F.-h. (2002). Deep Blue. Artificial
Intelligence, Vol. 134, pp.57-83.

[2]) , , . (2001).

, Game Programming Workshop 2001, pp.17-24.

[31 , (1995). , Game
Programming Workshop 1995, pp.148-156.

[4] Knuth, D.E., Moore, R.W. (1975). An analysis of alpha-beta pruning, Artificial
Intelligence 6(4). pp-210-229.

[5]1 , , , (1999).

; 99-GI-1, pp.85-89.

[6] Junghanns, A. (1998). Are there practical alternatives to alpha-beta in computer

chess?, ICCA Journal, 12(1), pp-14-32.

0 260

研究会Temp
－26－

