gobodobbooboooboo

IPSJ SIG Technical Report

oo n
0o oo* 00 O

g o

oooooooO0oOooo0ocoOOobO0OoOOooOO0oO0OO0OOb0O0On
oooooooooooooooooooobooooooooooooooo
ooooooooo0oboo0ocoOooOoOobooOo0oOoOoocoOooO0booO0o0oO
ooooobooOoooooOoooOoO0oco0oO0boO0o0cOoO0oOoboo0ooO
000 relevancy zoneODOOOOOOOO0OOOOODOOOOOOOOOO
ooooobooOoooOooOoooOoO0oOo0oOboOoO0OoO0O0oOoO0boO00oO0
oooooooOooOooOooO0OOO0O0O0O0000000O0

20050 GO 14090
0 20050905

Searching for Double Threats in Subproblems of

1

the Game of Go

Kazuki Yoshizoe * Hiroshi Imai

Abstract

It is difficult to make a fast and accurate evaluation function for the whole
board in the Game of Go. Therefore sub-goal directed search is used widely
among Go playing programs. One problem of sub-goal directed search is depen-
dencies between sub-goals. There are several researches which aim to resolve
the dependencies by obtaining the area which involves with the result of sub-
goals. An idea called relevancy zone is being used in some researches. In this
paper, we introduce an algorithm which search for an area which would im-
prove relevancy zone. The intersection of two such areas will be the candidate
for double threat.

Introduction

Compared to the programs of chess like games, Go playing programs are weak.
One of the reasons is that in the game of Go, existing evaluation functions are
inaccurate and/or requires great computational effort.

It is widely believed that it is extremely difficult to make fast and accurate
evaluation function for whole board in the Game of Go.

One reason of the difficulty is that the board is almost always “not quiet”.
That means, quiescence search is always needed before evaluation. Fortunately
in chess like games, the moves searched in quiescence search will usually turn
out to be good moves.

*C0000000000000000000D000000 yoshizoe@is.s.u-tokyo.ac.jp
*University of Tokyo, Graduate School of Information Science and Technology

0630

島貫
テキストボックス
社団法人　情報処理学会　研究報告
IPSJ SIG Technical Report

島貫
テキストボックス
2005－GI－14（9）
　 2005／9／5

島貫
テキストボックス
－63－

But in Go most of the moves searched in quiescence search will not be
actually played. To evaluate a node, we have to extend search depth, and after
the search, we have to return to the node where we have started quiescence
search. It means we have to search further, if we want to evaluate a node. This
makes it very time consuming to evaluate a node in the game of Go.

Because of this difficulty, evaluation of the whole board cannot be performed
so frequently. Therefore, many Go playing programs use sub-goal directed
search. A sub-goal is a local target which is easy to evaluate, such as connecting
stones, capturing stones, life and death problems, etc.

There are many sophisticated algorithms for sub-goal directed search. For
example, state of the art life-and-death problem solvers such as GoTools [4] and
Df-pn based Tsumego Solver [2] are very strong. Their speed and accuracy had
overcome the level of professional players. But overall strength of Go playing
programs remain at the level of novice players. (It is widely believed that the
strongest Go playing program is about 10 kyu in AGA! rating.)

To improve Go playing programs, it is necessary to fill in the gap between
the strength of sub-goal searches and the strength of overall play. One critical
element for this purpose is to resolve the dependencies between different sub-
goals. Without this ability, it is difficult to find multipurpose moves, and also
difficult to evaluate such moves exactly. For example, it is difficult to find moves
which aims to connect or to live locally at the same time.

The paper written by Cazenave and Helmstetter [1] and another paper by
Jan Ramon and Croonenborghs [5] are two examples of searching double purpose
moves using the idea of trace [1] or relevancy zone [6].

In this paper we present an algorithm for obtaining an area which we call
inverting threat. It is an attempt to find a more strict area compared to relevancy
zone and trace.

Related works are described in section 2. The motives for searching inverting
threat is explained in section 3. An algorithm for searching inverting threat is
shown in section 4. The result of an experiment is in section 5. Finally, there
is the conclusion and future work in section 6.

2 Related Work

The definition of relevancy zone is described in the paper about lambda search
[6] written by Thomsen. This is an area which possibly inverts the result of local
sub-goal search, in which if stones are played. Thomsen used this idea to solve
local problems of Go. relevancy zone is strictly defined and easy to calculate,
but as Thomsen already pointed out in his paper [6], it does not guarantee
correctness.

In Transitive Connections [1], Cazenave and Helmstetter defined ¢race. They
used trace to resolve the dependencies between two connections. trace is ob-
tained by adding the intersections that involved with the tests performed during

L American Go Association

0640

島貫
テキストボックス
－64－

the local sub-goal search. Unfortunately, the definition of trace is not further
described in [1].

In the paper, unions and intersections of traces are used for searching tran-
sitive connections. Unsurprisingly, using union was safer but slow, and using
intersection was fast but less safe. This is the first attempt to combine multi-
ple goals into one search using the idea such as trace. However, the sub-goals
searched in this paper is limited to connections problems.

In a paper written by Ramon and Croonenborghs [5] relevancy zone is used
for searching compound goals. This can be said to be a generalization of [1]. In
this paper, sub-goals are not limited to connections but also includes captures
and living. Their algorithm builds compound goals by combining sub-goals using
logical AND/OR/NOT. On improving speed for searching compound goals, they
use relevancy zone obtained from each sub-goal search.

3 The Motive for Searching Inverting-Threat

We propose to call an area inverting-threat. Inverting-threat has the same pur-
pose as relevancy zone and trace.

In each sub-goal directed search, there are local winner and local loser.
Inverting-threat is a move, or a set of moves which will invert the local win-
ner if winner passes. We also define the order of inverting-threat. 1st order
inverting-threat is the set of moves which will invert the local winner to loser if
the winner passes 1 time.

The definition of relevancy zone is strictly given, and fairly easy to calculate,
and also works well in many cases such as described in [6, 5]. But it does not
guarantee the correctness. As already pointed out in Thomsen’s paper [6],
relevancy zone can miss intersections which actually affect the result of the sub-
goal search. This might occur especially when the liberties strings adjacent
to relevancy zone are small (maybe less than 2). In the middle game of Go,
complicated situations always appears in which many stings are neighboring
each other and many of them have small number of liberties. In such cases, the
possibility that relevancy zone is not correct is considerably high.

We can only guess about trace because the definition of trace is not strictly
given in the [1]. We reckon that trace is covering larger area compared to
truly relevant area. Covering larger area makes the possibility to overlook the
intersections which are really an inverting threats.

In the paper “Transitive Connections” [1] Cazenave and Helmstetter used
two kinds of move candidates in searching transitive connections. One is the
union of the traces, and the other is the intersection of the traces. Using union
could solve more problems right, but was more time consuming. Using intersec-
tion was faster, but was less reliable.

By using relevancy zone, a program sometimes overlooks an inverting threat.
Union of trace is large and makes multipurpose search time consuming. Inter-
section of trace is small but unsafe.

Above these facts, our ideal goal is to implement an algorithm to find such

0650

島貫
テキストボックス
－65－

areas, which would not overlook an inverting-threat and also does not include
false threat. Our idea is that the most important part of such areas are 1st order
inverting-threat. So in this paper, we focus on finding 1st order inverting-threat.

4 Algorithm for searching Inverting-Threat

We have implemented an algorithm for searching 1st order inverting-threat.
Our algorithm follows 3 steps.

1. Do normal local sub-goal search and find the local winner and the local
loser.

2. Do second search which finds other winning moves for the local winner.
3. Retrieve 1st order inverting-threat from the search tree of the second
search.
4.1 1st step - Normal Search

There is nothing special about the 1st step. This step is for determining local
winner and the local loser. We have implemented a df-pn [3] based search
algorithm for this purpose.

4.2 2nd step - Searching Other Winning Moves

Figure 1: Captured White Stone

Let’s consider the case shown in figure 1. In the 1st step, search for capturing
the white stone would be done. The search is done twice, one black plays first,
the other white plays first.

The result shows that white cannot escape from being captured even if white
plays first. In this step, we search for the inverting-threat which turns the
loser(white) into the winner.

0660

島貫
テキストボックス
－66－

To search for the inverting-threat, we cannot use the result of the 1st step
immediately.

Figure 2 shows two examples of black’s winning moves if white played first.
Left example shows a capture by a ladder, and right example shows a capture by
a loose ladder (or geta). In many search algorithms, it is likely that capturing
by a ladder is searched first. In such case, other winning moves such as loose
ladder (or geta) are pruned and would never be searched.

’; -

Figure 2: Ladder and Loose Ladder(geta)

In this case, white wants to search the inverting-threat which makes the
white stone possible to escape (if black does not react).

If only capturing by a ladder was searched, white would misunderstand that
ladder breakers are part of the inverting-threat. White would play a false ladder
breaker, and black will ignore the move, then white tries to escape just to get
caught by a loose ladder.

Therefore, ideally all possible winning moves (for the local winner) should
be searched. Currently, we are doing a almost mini-max search for this step.
Pruning is done only when parent node is a pass move.

4.3 3rd step - Retrieve Inverting-Threat

In this step, 1st order inverting-threat is retrieved from the game tree which is
already searched in the 2nd step.

If we have an ideal move candidate generator which generates the candidate
moves for inverting-threat, all we have to do is to check each move if that is
really an inverting threat. (We can check it by allowing the loser to play two
consecutive moves.) Since we cannot have such a move generator, we have to
retrieve the information from the lower nodes in the game tree.

Figure 3 shows Lose in OR node. For OR node to be a Lose, all child nodes
must be Lose. If a child node is Lose, there is at least one Lose node among
the grandchild nodes. The local loser can choose any losing move. Therefore,

ge70

島貫
テキストボックス
－67－

Losg

Get Union of

Inverting 7 \I{erting Threats
——

Threat-~.__ 7
*

OR Node QAND Node

Figure 3: Retrieve Inverting Threat. OR Node.

the inverting-threat will be the union of each inverting-threat passed from the
children.

Lose
Get Intersection of
Inverting Threats
—
P v
Interting-
Threat,” Losg Losg Losg
;
,

Losd|win OR Node @AND Node

Figure 4: Retrieve Inverting Threat. AND Node.

Figure 4 shows Lose in AND node. For AND node to be a Lose, at least
one of the children must be Lose. The local winner can choose best Lose for the
winner. Therefore, the inverting-threat will be the intersection of each inverting-
threat passed from the children.

5 Results

Our algorithm successfully finds inverting threat shown in figure 5.

But in the 2nd step of the algorithm, the number of searched nodes are
extremely large. In the 1st step, df-pn based capturing search only searched
98 nodes in total. In the 2nd step, our algorithm needed to search more than

0680

島貫
テキストボックス
－68－

X X
X X X

Figure 5: 1st order Inverting Threat

1,000,000 nodes.

There are two reasons for this. One reason is the number of move candidates
are increased (forward pruning decreased). This is because the moves which are
only candidates of inverting threats were added.

The other reason is searching for other winning moves results in less prun-
ing (backward pruning decreased). Searching for other possibilities for other
winning moves near the terminal node exponentially increased the number of

searched nodes compared to normal search algorithms especially capturing in a
ladder.

6 Conclusion and Future Work

We have implemented an algorithm which searches for an area which we call
1st order inverting-threat. However, in one of the steps of the algorithm, it
consumes computational time which is very close to that of mini-max search.
To improve the speed, a more sophisticated pruning specially designed for
inverting threat search should be implemented.
We will use this result to implement a program which solves local problems
of Go which includes multiple sub-goals.

References

[1] Tristan Cazenave and Bernard Helmstetter. Search for transitive connec-
tions. Information Sciences, December 2004.

[2] Akihiro Kishimoto and Martin Muller. Dynamic decomposition search: A di-
vide and conquer approach and its application to the one-eye problem in go.
In IEEE Symposium on Computational Intelligence and Games (CIG’05),
pages 164-170, 2005.

0690

島貫
テキストボックス
－69－

3]

Ayumu Nagai. Df-pn Algorithm for Searching AND/OR Trees and Its Ap-
plications. PhD thesis, Department of Information Science, University of
Tokyo, Tokyo, 2002.

M. Pratola and T. Wolf. Optimizing gotools’ search heuristics using genetic
algorithms. ICGA Journal, 26(1):28-49, March 2003.

J. Ramon and T. Croonenborghs. Searching for compound goals using rel-
evancy zones in the game of go. In J. van den Herik, Y. Bjornsson, and
N. Netanyahu, editors, Fourth International Conference on Computers and
Games, Ramat-Gan, Israel, 2004. ICGA.

Thomas Thomsen. Lambda-search in game trees - with application to go.
ICGA Journal, 23(4):203-217, December 2000.

0700

島貫
テキストボックス
－70－

