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tbstract revious approaches to detecting and correcting speech repairs have for the most
part separated these two problems. In this paper, we present a statistical model of
speech repairs that uses information about the postulated repair structure (correc-
tion) to help decide whether a speech repair actually occurred. By better modeling
the interactions between detection and correction, we are able to improve our de-
tection results.
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1 Introduction

Interactive spoken dialog provides many new challenges
for spoken language systems. One of the most critical is
the prevalence of speech repairs. Speech repairs are dys-
fluencies where some of the words that the speaker utters
need to be removed in order to correctly understand the
speaker’s meaning.

Fortunately for the hearer, speech repairs tend to have
a fairly standard form. As illustrated in the example be-
low from the TRAINS corpus (d92a-5.2 utt34), they can
be divided into three intervals, or stretches of speech: the
reparadum, the editing terms, and the alteration.!

we’ll pick up a tank of uh the tanker of oranges
N i’ S~ N e’
reparadum | editing terms alteration

interruption point

The reparadum is the stretch of speech that the speaker in-
tends to replace, and this could end with a word fragment,
where the speaker interrupts herself during the middle of
the current word. The end of the reparadum 1s called the
interruption point and is often accompanied by a disrup-
tion in the intonational contour. This is then followed
by the editing terms, which can either be a filled pause,
such as “um” or “uh” or a cue phrase, such as “I mean”,
“well”, or “let’s see”. The last part is the alteration, which
is the speech that the speaker intends as the replacement
for the reparadum. In order to correct a speech repair,
the reparadum and the editing terms need to be deleted
in order to determine what the speaker intends to say.”?
In the TRAINS corpus of human-human problem solv-
ing dialogs, speech repairs abound. Just considering re-
pairs that consist of something more than editing terms
(i.e. the reparadum is not empty), we find that they oc-
cur in 20% of all speaker turns. As the length of a turn
increases, so does the chance of finding such a repair. For
turns of at least ten words in length, 48% of them have
at least one repair, and for turns of at least thirty words,
76% have at least one. In terms of number of words, 9.4%
of the words in the TRAINS corpus are in the reparadum
or are an editing term of a speech repair.
Psycholinguistic work in understanding speech repairs
and the implications that they pose for theories of speech
production have come up with a number of classification
systems. A lot of these are based on comparing the con-
tent of the reparadum with the alteration, such as whether
the material was repeated, material was inserted, or made
more appropriate, or if it was a production error or a plan-
ning error. For work in computational detecting and cor-
recting speech repairs, we follow Hindle’s approach (1983)
and use a much simpler classification scheme, based on
what the hearer needs to do to correct a speech repair.
We divide speech repairs into three types: fresh starts,
modification repairs, and abridged repairs. A fresh start

INotation adapted from Levelt (1983). Following Shriberg (1994)
and Nakatani and Hirschberg (1993), we use reparadum to refer to
the entire interval being replaced, rather than just the non repeated
words. We have made the same change in definition for alteration.

2The reparadum and the editing terms might still contain prag-
matic information, as the following contrived example displays, “Pe-
ter was ...well ... he was fired.”

is where the speaker abandons the current utterance and
starts again, where the abandonment seems accoustically
signaled (d93-12.1 utt30).

so it’ll take um so you want to do what
R —~—

reparadum | editing term alteration

interruption point

The second type of repairs are the modification repairs.
These include all other repairs in which the reparadum is
not empty (d92a-1.3 utt65).

so that will total  will take seven hours to do that
N N N e’

reparadum | alteration

interruption point

The third type of repairs are the abridged repairs, which
consist solely of an editing term (d93-14.3 utt42).

we need to um manage to get the bananas
~——
editing term

interruption point

Problematic to the above classification scheme are the
repairs whose reparadum consists solely of a word frag-
ment. Under this scheme, these will either be fresh starts
or modification repairs. However, our input is the word
transcription (as would be provided by an ideal speech rec-
ognizer), with the word fragments marked. Given this, a
word fragment is much like a filled pause in that we know
we must always remove them. Hence, for this paper, we
will treat such repairs in the same class as the abridged
repairs.

The strategies that a hearer can use for correcting
speech repairs depends on the type of repair. For fresh
starts, the hearer must determine the beginning of the
current utterance, and takes this as being the onset of the
reparadum. For modification repairs, the hearer can make
use of the repair structure, the parallel structure that often
exists between the reparadum and alteration, to determine
the extent of the reparadum. For abridged repairs, there is
no reparadum, and so simply knowing that it is abridged
automatically gives the correction.

Previous work in correcting speech repairs (Levelt, 1983;
Hindle, 1983; Kikui and Morimoto, 1994) has assumed
that speech repairs are accompanied by an acoustic edit-
ing signal (Labov, 1966). Given the interruption point, the
type of repair, and the syntactic categories of the words
involved, correction rates of around 95% can be achieved.

However, a reliable accoustic signal has yet to be found
(Bear, Dowding, and Shriberg, 1992). Rather, detection
of speech repairs probably relies on the combination of a
number clues, both accoustic and lexical. Furthermore,
the assumption that detection and correction can be done
as separate processes might not be appropriate. Although
experiments by Lickley and Bard (1992) have found that
hearers were able to recognize a disfluency by the end
of the first word of the alteration in 85.4% of the cases,
this still leaves 16.6% of the repairs in their test set unac-
counted for. In order to detect these, the hearer must need
more context. Part of this context might be the presence
of a suitable correction. Hence, strategies for speech repair
detection and correction that separate these two tasks will



be unable to account for a significant number of repairs.
The only solution is to use information about the likely
correction for a potential interruption point as a clue for
deciding if it is in fact a repair.

In this paper, we will focus on modification repairs
and show how our existing statistical model for detecting
modification repairs (Heeman and Allen, 1994) can be aug-
mented to use information about the proposed correction.?
We have categorized potential corrections into a set of ten
different groups, which differ in terms of how strongly they
signal a modification repair. When detecting speech re-
pairs, we use the correction algorithm to determine the
proposed correction, and then use the category of the
proposed correction as part of the context for deciding
whether a speech repair has actually occurred. This ap-
proach of interleaving detection and correction lets us bet-
ter model the interdependencies that exist between these
two tasks.

2 Previous Work

Most previous research work has separated the problems
of detecting speech repair and of correcting them. One of
the first computational approaches to correction was un-
dertaken by Hindle (1983). In this work, Hindle assumed
that the input was marked with the interruption points of
speech repairs as well as the syntactic category of the in-
put words. If he found a word sequence repetition across
the interruption point, he took the first sequence to be
the reparadum. For the rest of the repairs, he used a de-
terministic parser to look for constituent correspondences
across the interruption point, preferring correspondences
where both are complete over those in which the first is
incomplete. With this parsing based approach, Hindle was
able to achieve a correction recall rate of 97%.

Kikui and Morimoto (1994) also worked from the premise

that the interruption points of speech repairs have already
been detected and part-of-speech assignment already as-
signed. Working with a Japanese spoken language corpus,
they employed two techniques to determine the onset of
the reparadums. First, they find all possible onsets for
the reparadum that cause the resulting correction to be
well-formed, according to an adjacency matrix that lists
syntactically well-formed POS transitions. Second, they
used a similarity-based analyzer (Kurohashi and Nagao,
1992) that finds the best path through all possible re-
pair structures using dynamic programming. Each type
of word correspondence has been given a different weight.
The best path was then altered to take into account the
well-formedness information from the first step. Using this
approach, they were able to achieve a correction recall rate
of 92% on a test corpus of 300 utterances.

One of the few works on computational detecting speech
repairs was done by Nakatani and Hirschberg (1993). Us-
ing hand-transcribed prosodic annotations, they trained a
classifier on a 172 utterance training set to identify the

2Qur reason for excluding fresh starts is that we are using a cor-
pus of spoken dialogs, rather than isolated utterances. Hence this
corpus poses the additional problem of determining the onset of the
reparadum of fresh starts.

interruption point (each utterance contained at least one
repair). On a test set of 186 utterances, also each contain-
ing at least one repair, they obtained a recall rate of 83.4%
and a precision of 93.9% in detecting speech repairs. The
clues that they found relevant were duration of pause be-
tween words, presence of fragments, and lexical matching
within a window of three words. However, speech repairs
occurred in only 5.2% of the utterances in their corpus,
so it is difficult to say how this would impact their pre-
cision rate if they tested over a representative sample of
utterances.

In contrast to the above approaches, the SRI group
(Bear et al., 1992) concentrated on detecting and correct-
ing speech repairs. They employed simple pattern match-
ing techniques for detecting and correcting modification
repairs and fresh starts. For detection, they were able to
achieve a recall rate of 76%, and a precision of 62%, and
they were able to find the correct repair 57% of the time,
leading to an overall correction recall of 43% and correc-
tion precision of 50%. In later work (Dowding et al., 1993),
they also tried combining syntactic and semantic knowl-
edge in a ”parser-first” approach—first try to parse the
input and if that fails, invoke repair strategies based on
word patterns in the mput. In a test set contalning 26
repairs, they obtained a detection recall rate of 42% and
a precision of 84.6%:; for correction, they obtained a recall
rate of 30% and a recall rate of 62%.

In earlier work, Heeman and Allen (1994) also looked
at detecting and correcting speech repairs. In this work,
structural analysis of the word correspondences was used
to propose potential modification and abridged repairs.
Acting in conjunction with a part-of-speech tagger trained
on spoken dialogue, it achieved a correction recall rate
of 86% and a precision of 43% across modification and
abridged repairs (with fresh starts removed from the cor-
pus). To counteract the low precision rate, the hypoth-
esized modification repairs were filtered by a statistical
model of speech repairs. This resulted in an overall correc-
tion recall rate of 80% and precision of 86% over abridged
and modification repairs. The statistical model however
suffers from not using the proposed repair structure as
a clue in deciding if a repair actually occurs, but simply
relies on the yes/no decision of the correction module.

3 The Trains Corpus

As part of the TRAINS project (Allen et al., 1995), which
is a long term research project to build a conversationally
proficient planning assistant, we have collected a corpus of
problem solving dialogs (Heeman and Allen, 1995). The
dialogs involve two human participants, one who is playing
the role of a user and has a certain task to accomplish, and
another who is playing the role of the system by acting as
a planning assistant. The collection methodology was de-
signed to make the setting as close to human-computer in-
teraction as possible, but was not a wizard scenario, where
one person pretends to be a computer. Rather, the user
knows that he is talking to another person.

The corpus consists of 98 dialogs totaling six and a
half hours in length and containing about 55,000 words,



5900 speaker turns, and 34 different speakers. These di-
alogs have been segmented into single speaker utterance
files and word annotated using the Waves software (Ent,
1993). The corpus is available from the Linguistics Data
Consortium on CD-ROM (Heeman and Allen, 1995).

The speech repairs in the dialog corpus have been hand-
annotated. There is typically a correspondence between
the removed text and the resumed text, and following
Bear, Dowding and Shriberg (1992), we annotate this us-
ing the labels m for word matching and r for word replace-
ments {(words of the same syntactic category). Each pair
is given a unique index. Other words in the reparadum
and alteration are annotated with an x. Also, editing
terms (filled pauses and clue words) are labeled with et,
and the interruption point with ip, which will occur before
any editing terms associated with the repair, and after the
fragment, if present. The interruption point can also be
marked as to whether the repair is a fresh start or a modi-
fication repair, in which cases, we use ip:can and ip:mod,
respectively. The example below illustrates how a repair
is annotated in this scheme.

engine two from Elmi- or engine three from Elmira
ml r2 m3 m4et ml r2 m3 m4
ip:mod

Further details of this scheme can be found in (Heeman
and Allen, 1996a).

4 Statistical Model

For detecting speech repairs, we use a statistical model
based on a part-of-speech tagger. For modification repairs,
the category transition probabilities from the last word of
the reparadum to the first word of the alteration have a
different distribution than category transitions for fluent
speech. So, by giving these distributions to the part-of-
speech tagger, the tagger can decide if a transition signals
a modification repair or not. In fact, in our general model
(Heeman and Allen, 1996b), we feel that these different
distributions can be used as the basis for detecting fresh
starts and intonational phrase boundaries as well.
Part-of-speech tagging is the process of assigning to a
word the category that is most probable given the sen-
tential context (Church, 1988). The sentential context is
typically approximated by only a set number of previous
categories, usually one or two. Good part-of-speech re-
sults can be obtained using only the preceding category
{Weischedel et al., 1993), which is what we will be using.
In this case, the number of states of the Markov model
will be N, where N is the number of tags. By using the
Viterbi algorithm, the part-of-speech tags that lead to the
maximum probability path can be found in linear time.
Figure 1 gives a simplified view of a Markov model for
part-of-speech tagging, where C; is a possible category for
the 7th word, w;, and Ci41 is a possible category for word
wi+1. The category transition probability is simply the
probability of category Cyy following category Cj, which
is written as P(Ci;+1|C;). The probability of word wiy;
given category Ciy1 is P(w;i41|Ciy1). The category assign-
ment that maximizes the product of these probabilities is

P(w|C) P(wit1|Cit1)

P(Ci41]Ci)

Figure 1: Markov Model of Part-of-Speech Tagging

taken to be the best category assignment.

To incorporate knowledge about modification repairs,
we let T; be a variable that indicates whether the transi-
tion from word w; to w; 41 contains the interruption point
of a modification repair. Rather than tag each word, w;,
with just a category, C;, we tag it with T;_,C;, the cate-
gory and the presence of a modification repair. So, we
need the following probabilities, P(T;C;41|Ti-1C;) and
P(w;{T;—1C;). To keep the model simple, and ease prob-
lems with sparse data, we make several independence as-
sumptions. By assuming that 7;_; and 7;C;4; are inde-
pendent, given C;, we can simplify the first probability to
P(T;|C;) x P(Ci41|CiT;); and by assuming that T;_; and
w; are independent, given C;, we can simplify the second
one to P(w;|C;). The model that results from this is given
in Figure 2. As can be seen, these manipulations allow us
to view the problem as tagging null tokens between words
as either the interruption point of a modification repair,
T; = M, or as fluent speech, T; = P. For completeness,
we also show the transitions for fresh starts, 7; = C, and
for intonational phrase boundaries, 7; = 7.

Figure 2: Statistical Model of Speech Repairs

Modification repairs can be signaled by other indica-
tors than just syntactic anomalies. For instance, the pres-
ence of word fragments and filled pauses, editing terms, si-
lence duration and word matches also indicate their pres-
ence. This information can be added in by viewing the
presence of these clues as part of the context to be used in
computing the probabilities of the transition type. So, we
replace P(T;|C;) by P(T;|C; F; E;S; M;), where Fj indicates
the presence of a word fragment, E; indicates the presence
of an editing term, S; indicates the precence of a pause,
and M; indicates the precence of a word matching. If we
make independence assumptions about the occurrence of
these clues, we can rewrite this as the following.

P(L3|Cs) - P(Ti|Fy)/ P(Ty) - P(E| F3)/P(T5) - ...



5 Structural Analysis

To determine the correction of a modification repair, we
use the well-formedness constraints for repair structures
defined by Heeman and Allen (1994). Here however we
assume that the statistical model will determine the pres-
ence of a modification repair, rather than expecting the
structural analysis to do this.

The well-formedness constraints make use of word cor-
respondences to find the parallel structure that often exists
between the reparadum and the alteration. These word
correspondences consist of both word matches and word
replacements based on part-of-speech labels, given by the
statistical model. The repair structure is built by using
constraints that limit what can be added to the hypothe-
sized repair structure.

The first constraint is that correspondences must be
between a word in the reparadum and a word in the al-
teration; in order words, they must cross the interruption
point.

(1) All correspondences must cross the interruption point
and editing terms if present.

The next constraints are used to start the application
of word correspondences when no correspondences are yet
in the repair structure.

{2) A word matching can be added to the repair struc-
ture if there are at most 3 intervening words, exclud-
ing fragments and editing terms, between the first
part and the second part of the correspondence.

(3) An adjacent pair of word matches can be added to
the repair structure if there is at most 6 interven-
ing words, excluding fragments and editing terms,

between them.

A word replacement can be added to the repair struc-
ture if there are no intervening words between the
two words.

The rest of the constraints are used to restrict the
word correspondences that are added to an existing re-
pair structure. But first we need to introduce some nota-
tion. Figure 3 shows two word correspondences m; and
my. We denote the part of each correspondence that is in
the reparadum with a superscript r, and the part that is
in the alteration with an a. The interval w] ; refers to the
sequence of words between mf and m¥; and the interval
Wy
Word correspondences ¢ and j are adjacent if there are no
words labeled with a word correspondence in the w; and

wi j intervals.

refers to the sequence of words between m? and m%.

T gl
1~~~ ]

Y
Wij

Cmd ...
1~
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.ip - m?

p i
3

Figure 3: Distance between correspondences

Constraint (5) restricts word correspondences so that
they are cross serial. This reflects the tendency of speakers

not to change the order of words between the reparadum
and alteration.

(5) Word correspondences must be cross-serial; for two
correspondences indexed by 7 and j in the repair
structure, if mf precedes mj‘ then mi’l must precede

m.

J
For two adjacent word correspondences, Constraint (6)
ensures that there is at most 4 intervening words in the
reparadum, and Constraint (7) ensures that there are at
most 4 intervening words in the resumed text.

(6) In the reparadum, two adjacent matches can have at
most 4 intervening words (Jw! ;| < 4).

(7) In the alteration, two adjacent matches can have at
most 4 intervening words (Jwf;| < 4).

The next constraint is used to capture the regularity
that words are rarely dropped from the reparadum, in-
stead they tend to be replaced.

(8) For two adjacent matches, the number of interven-
ing words in the reparadum can be at most one more
than the number of intervening words in the alter-
ation (|w1’]| < }wf]| +1).

The last constraint is used to restrict word replace-
ments. From an analysis of our corpus, we found that
word replacement correspondences are rarely isolated from
other word correspondences.

(9) For a word replacement (except those added by con-
straint 4), there must be a word correspondence in
which there are no intervening words in either the
reparadum or the resumed text (w]; = wf; = 0).

5.1 Results

In Table 1, we give the performance of the well-formedness
constraints in determining the correction for modification
repairs. These rates compare favorably to those reported
by Hindle (1983) and Kikui and Morimoto (1994).

Training Test
Set Set

Number | 427/445 | 436/456
Recall 96.0 95.6

Table 1: Result of structural analysis

6 Using Structural Analysis as a
Detection Clue

From Table 1, it is clear that good results can be achieved
in correcting modification repairs given the correct part-of-
speech assignment and given the interruption points. So,
it would be beneficial if this source of knowledge could be



deployed in detecting speech repairs. Unlike the approach
taken by Heeman and Allen (1994), we want to integrate
this source of information into the statistical model, so
that it can be combined with the other sources of infor-
mation. Rather than trying to devise an ad-hoc scoring
scheme, our approach is to categorize the potential repair
structures into categories that reflect their likelihood of
actually being a repair. These categories can then be used
as part of the context for deciding whether a transition is
a modification repair or not.

6.1 Inconsistent Matches

The statistical model already employs the presence of word
matches as one of its clues. But this is a very rough indi-
cator of the phenomena of repair structure, and is no help
in locating the interruption point. Consider the following
example (d92a-3.2 utt45).

which engine are we are we taking
ml T m2 T ml | m2
ip? ip:mod ip?

There are three transition points that have word matches
across them: the actual one labeled with ip:mod, and the
two neighboring ones labeled with ip?. Only using the
presence of a word matching will distinguish the actual
interruption point over its two competitors, even though
the actual interruption point is the only one that properly
accounts for all of the word matches, while the proposed
repair structure for the other two would posit an inserted
or deleted word for part of the other matching, as illus-
trated below.

which engine are  we are we taking
ml

ip?

x ml

To disprefer proposed interruption points whose repair
structure cannot properly account for all word matches, we
need to let the structure analysis algorithm check for word
matches that are inconsistent with the proposed interrup-
tion point, but are consistent with the other matches that
are found. These would be word matches that conform
to the constraints given in the previous section with the
exception that they don’t cross the proposed interruption
point. Rather, there is some other transition point(s) that
all of the word matches do cross, and this transition point
would be a much more likely candidate for the interrup-
tion point. In the example above, after the structure anal-
ysis routine has found the matching on the words “are”,
it would be free to add the correspondence on the word
“we” . since there is still a transition point, namely the
actual transition point, that both correspondences cross.
This would lead to the following proposed repair struc-
ture, with the inconsistent matching labeled with o.

which engine are
ml

we are we taking
02 ml o2
ip?

Such inconsistent matches are very rare for actual in-
terruption points of modification repairs, but are common
for fluent speech that is close to an interruption point.

Hence this helps discredit neighboring transitions from
taking credit for the word correspondences that are due
to a modification repair.

So, we restrict the usage of Constraint (1) so that it
is used only when finding the initial matching. For all
other matches that are added, we use the following weaker
constraint in its place.

(1a) There must exist a word transition that all word
correspondences cross.

With this revised set of constraints, we will be able to
categorize repair structures as to whether they account
for all word matches in their vicinity.

6.2 Amount of Changed Material

Another way to categorize potential repair structures is by
the amount of changed material between the reparadum
and alteration. For modification repairs, there is typically
one sequence of words that have been changed in the alter-
ation, or a sequence of words that have been inserted, and
the rest of the alteration simply repeats the reparadum.
Proposed repair structures for transition points that are
not interruption points of a modification repair, however,
do not necessarily obey this regularity. Consider the fol-
lowing example (d93-14.1 utt10).

it could either take you 8 hours or it could take you 6 hours

m m X m myr m Xm m m mr r m
ip?

Here, the proposed alteration deletes the word “either”,
replaces “eight” by “six”, and inserts “or”, giving 3 re-
gions of changed words.

From a study of the speech repairs in the Trains corpus,
we found that for modification repairs, there was a max-
imum of two such regions. Anymore than this indicated
that the proposed repair structure was spurious or due to
a fresh start. We also found that if a deleted, inserted,
or replaced region consisted of more than four words (as
could result from Constraint (3)), it was also not indicative
of a modification repair. So, we classify potential repair
structures as to whether there are more than two regions
of changed words or whether a changed region consists of
more than four words.

6.3 Simple Patterns

Now that the above irregular categories have been dealt
with, we are left with patterns that only differ by the
amount of support that they offer. Four of these patterns
are very distinctive and occur often enough that they can
form categories on their own. These categories are: single
word replacements (r.r), single word repetitions (m.m),
multiple word repetitions (mm+.mm-+), and cases in
which the structural analysis does not find a suitable re-
pair structure, which we take as a single word deletion

(x.).



6.4 Interruption Point

To distinguish the remaining potential repairs, we looked
at how the proposed repair structures constrains the in-
terruption point. There are four possibilities. First, there
might be word matchings on both the word before the in-
terruption point and on the word after, and so the pattern
constrains the interruption point. Second, there might
only be a word matching on the word before (or to the left
of) the interruption point, and so the interruption point
is only constrained on the left. Third, the interruption
point could be constrained on the right side. Or lastly,
their might not be word matchings either to the immedi-
ate left or right of the proposed interruption point. What
we found was that the more constrained the proposed in-
terruption point, the greater the likelihood that it was of
a modification repair.?

6.5 Repair Structure Categories

In all, we categorized potential repair structures into ten
classes. Next, we ran the structure analysis on every
transition point, which is the set of potential interrup-
tion points. Table 2 gives the number of occurrences of
each of the ten categories, and their distribution by actual
transition type, be it a plain transition (fluent speech or
abridged repair), intonational phrase ending, modification
repair, or fresh start. As can be seen, very few modifica-

Category P T M C
35624 | 4192 | 81 | 300
566 135 | 118 16
337 50 0 12
1110 95 4 3

Xx. pattern

r.r pattern

too much changed
other matches

ip not constrained 919 125 7 21
m.m pattern 44 53 | 309 47
repetition 5 13 | 159 40
ip constrained 42 17 50 37
ip constrained on left 787 89 75 71
ip constrained on right 792 210 | 110 81

Table 2: Table of Repair Structure Categories

tion repairs fall into the categories of too much changed,
other maiches, and ip not constrained.

Given the category of a potential repair structure, we
need to determine how this information can be used as
a clue by the statistical model. From Table 2, we can
estimate the probability of the transition type given the
structural analysis category. As with the other sources of
evidence, we use the preference factor P(T;|S;)/P(T;) to
adjust the scores used by the statistical analysis. These
preference factors are given in Table 3. In this table, we
can see that if a transition point has a proposed repair
structure that has other matches, we adjust the probability
that this point is the interruption point of a modification
repair by a factor of 0.17; whereas if the proposed repairs

4Other alternatives can be used, such as using any word corre-
spondence, rather than just matches, or looking at the percentage or
words involved in the repair are marked with a word correspondence.

Category P T M C
X. pattern 1.03 | 0.98 0.10 0.56
r.r pattern 0.79 1 1.52 7.24 1.43
too much changed 0.98 | 1.18 0.00 2.24
other matches 1.06 | 0.74 0.17 0.18
ip uncoustrained 1.00 | 1.09 0.33 1.46
m.m pattern 0.11 | 1.10 | 34.92 7.72
repetition 0.03 | 0.56 | 37.52 | 13.72
ip constrained 0.33 | 1.09 | 17.53 | 18.86
ip constrained on left 0.89 | 0.82 3.76 5.17
ip constrained on right | 0.77 | 1.65 4.72 5.05

Table 3: Transition preferences

structure was a repetition, we would multiply the proba-
bility by a factor of 37.52. We can also see that proposed
interruption points that are constrained on the right are
more preferred over those constrained on the left. This
captures the tendency of alterations to start with word
matches and the changed material to be at the end of the
reparadum.

Before incorporating the preferences into the statisti-
cal model, we need to verify that the structural analysis
categories are sufficiently independent from the other con-
text clues that are used. However, two strong dependen-
cies suffice. First, the single word replacement category is
very dependent on the category choice for the two words
that are involved in the replacement. In fact, this type
of repair structure is already modeled by the probability
P(Ci+1|T3C;). So, we do not use this category.

Second, there is a strong dependence between the pres-
ence of a word match and the structural analysis cate-
gory. So we combine these two sources of information,
using P(7;]S;M;)/P(T;) as the preference factor. To cope
with the limited amount of training data, we use a back-off
model (Katz, 1987), which first back-offs on the identify of
the matching word, and then on the distance between the
word matching. Next we back-off on the structural anal-
ysis score, combining categories that make similar predic-
tions about the occurrences of a modification repair. Next
we back-off the POS tag of the matching word to a more
general tag.

6.6 Results

Table 4 compares the results achieved without using struc-
tural analysis with the results from using it. A cross vali-
dation method was used in obtaining the results, in which
the corpus is divided into 6 parts. For obtaining results
for each part, the other five parts are used for gathering
training data. So, we find that by using the above struc-
tural analysis categories, the recall rate improves by 4.1%

Model Recall | Precision
Without Structural Knowledge | 72.4% 68.7%
With Structural Knowledge 75.4% 76.8%

Table 4: Results from using repair structure in detecting
modification repairs



and the precision by 11.8%. This decreases the recall er-
ror rate by 10% and decreases the precision error rate by
25.9%.

7 Conclusions

In this paper, we tried to illustrate how the two problems
of detecting speech repairs and correcting them are not
separable. First, the detection of speech repairs can not
just detect the occurrence of a repair, but should classify
the repair based on the correction strategy. Second, the
correction strategy should be able to categorize the poten-
tial repair structure based on how likely it is to in fact be
a repair. This will help the detection model to skip over
transitions that should be ruled out by the lack of a con-
vincing repair structure. By using structural information
as a clue for detecting speech repairs, our recall rate for
detecting modification repairs increased by 4.1%, and the
precision increased by 11.8%.
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