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Abstract

This paper proposes a large vocabulary spontaneous dialogue speech recognizer using cross-word con-
text constrained word graphs. In this method, two approximation methods “cross-word context approxi-
mation” and “lenient language score smearing” are introduced to reduce the computational cost for word
graph generation. The experimental results using a “travel planning corpus” show that this recognition
method achieves a word hypotheses reduction of 25-40% and cpu-time reduction of 30-60% compared to
no approximation, and that the use of class bigram scores as the expected language score for each lexicon
tree node decreases the 25-30% of word error rate compared to no approximation.
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1 introduction

Reducing the number of word (sentence) hypothe-
ses is an important issue for reducing the total
amount of computational cost for a search.

We have already proposed a sentence hypothe-
ses merging method on a time-synchronous con-
tinuous speech recognizer driven by a context-
free grammar[l]. In this method, a huge com-
putational cost reduction is achieved by merging
hypotheses with the same phoneme history but
with a different syntactic parse. However, the
computational cost required for the spontaneous
dialogue recognition is still quite large because
a large number of sentence hypotheses have to
be considered to cope with the spontaneous ut-
terances which include many ungrammatical phe-
nomena such as filled pauses, hesitations, and cor-
rections.

To cope with this problem, or to cope with
computational cost reduction of large vocabulary
recognition, recently, recognition schemes using
word graphs have been proposed [2][3][4][5]. In
these schemes, the following word hypotheses re-
duction method has been successfully applied for
word graph generation:

¢ Word hypotheses pruning using “word
pair approximation” [4][6]
Assume the word boundary between two
succeeding words to be independent of fur-
ther predecessor words.

e Language model smearing on tree struc-

tured lexicon[5][7]

Another way to reduce the number of word
hypotheses is to use a narrow beam width.
However, as pruning errors are likely to oc-
cur when a language score is close to the
pruning threshold, smear the language score
over the tree.

However, these two methods have the following
problems respectively.

o Increasing the number of word hypothe-
ses caused by the existence of many
predecessor words
As a “word pair approximation” uses the
predecessor information, the number of word
hypotheses increases as the number of pre-
decessor words becomes large, even if many
predecessor words have the same word end-
ing portion (same phoneme sequence).

e Drastic changes of language score near
the root node of the lexicon tree
As the expected language score on each tree
node is the “minimum language score” of

the words sharing the initial phone sequence,
the score near the root node is still large.
Therefore, a rather large beam width is still
required.

This paper proposes a spontaneous dialogue
speech recognizer using cross-word context con-
strained word graphs. In this method, “cross-
word context approximation” is introduced to solve
the first problem, and “lenient language score smear-
ing” is introduced to solve the second problem.

In section 2, we describe a system structure
that uses word graphs in a multi pass search frame-
work. Next, in section 3, we describe methods to
reduce the number of word hypotheses in word
graph generation. Then, we present experimental
results obtained using a “travel planning corpus”.
Finally, we conclude with a discussion in Section
5.

2 recognizer overview

In our multi pass search approach, detailed acous-
tic models are employed in the first pass to avoid
redundant acoustic matching in the second pass.

First pass Word hypotheses generation

A one-pass time-synchronous beam search
generates a list of word hypotheses resulting
in a word graph. The predecessor word in-
formation, the exact acoustic scores (includ-
ing the cross-word context) using context-
dependent HMMs, class bigram (variable-
order N-gram [8]) language scores, and the
start-time and end-time are kept.

Second pass Word hypotheses pruning
A more complex language model such as
a trigram is applied and the score of each

word hypothesis is re-evaluated time-asynchronously.

Word hypotheses lower than the certain thresh-
old are removed to reduce the overall graph
size.

3 Approximation methods

3.1 Cross-word context approxima-
tion

When a detailed acoustic model is used, many
predecessor words are expected to have the same
word ending portion. However, as a “word pair
approximation” uses the predecessor word when
determining the word boundary, the number of
word hypotheses becomes large, even if many pre-
decessor words have the same word ending por-



tion. To solve this problem, we use the “cross-
word context” as predecessor word information.

Figure 1 shows a simple example of “cross-word
context approximation”. If there exists many word
hypotheses that have the same word-id and the
same end-time, only the hypothesis having the
largest score for each cross-word context will be-
come alive. (Two word hypotheses which have
the cross-word context “z/ai/as” become “dead”).

The advantage of this method is that the num-
ber of word hypotheses each with the same word-
id does not exceed the number of phonemes.
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Figure 1: A simple example of cross-word context
approximation

3.2 Lenient language score smear-
ing on lexicon tree

A tree organization that takes advantage of the
fact that many words share the same initial phoneme
sequence, and the expected language score for
each lexicon tree node are applied before the word
identity is known[5][7].

The proposed “lenient language score smear-
ing” uses a smaller language score than the con-
ventional method employing the “minimum lan-
guage score” of words sharing the initial phone
sequence. A simple example of phoneme level
smearing is the use of the sum score instead of
the minimum score (Figure 2). In this method,
changes of the language score near the root node
of the tree lexicon become smaller than those of
the conventional method. Therefore, it is ex-
pected to use a narrower beam width. A further
complex smearing, language score smoothing be-
tween the lexicon nodes is also considered to re-
duce the beam width. Figure 3 shows the exam-
ple of language score smoothing. The language
scores are re-estimated at each HMM state.

To reduce the storage efforts the use of uni-
gram scores instead of word bigram scores has
already proposed (unigram estimation)[7]. (For
example, the storage effort of the bigram scores

using 6,635 words lexicon is 215Mbyte.) However,
as the distribution of unigram scores are quite
different from that of bigram scores, unexpected
pruning may occur. To solve this problem, we
use class bigram (the classes are generated us-
ing variable-order N-gram procedure [8]) scores
as the expected language score for each lexicon
tree node. The storage effort of the class bigram
scores are only 4% of the word bigram scores.
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Figure 2: A simple example of lenient language
score smearing (max,sigma)
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Figure 3: An example of further complex smear-
ing (smoothed)

4 Experimental Results

Experiments evaluating the effect of “cross-word
context approximation” and “lenient language score



smearing on lexicon tree” were carried out us-
ing spontaneous multi-lingual/monolingual dia-
logue speech of a “travel planning corpus”[9]. The
state-shared context-dependent HMM (HMnet[10])
was used as an acoustic model. These acoustic
models are adapted by the speaker specific utter-
ances using Transfer Vector Smoothing (VFS)[11].
Three different size of lexicon are used for the ex-
periment.

1ex6600 vocabulary of whole task (utterances of
customer, clerk and interpreter are included).

1ex3000 vocabulary appeared in the customer’s
utterance.

lex1200 vocabulary appeared in the customer’s
utterance of the “hotel reservation task”.

Other experimental conditions are summarized in
Table 1.

Table 1: Experimental conditions

[ Analysis conditions
Sampling rate 12 kHz
Window Hamming window (20 ms)
Frame period 10 ms
Analysis log power +
16-order LPC-Cep +
Alog power +
16-order ALPC-Cep
[ HMnet ]
State 401 states, 5 mixture
Tralning 2,620 words
Retraining 150 sentences (read speech)
Speaking-style 128 utterances
Adaptation (non-read speech)
Speaker 1 dialogue
Adaptation (non-read speech)
{ Language model (class bigram) ]
{ Training [ 18,315 utterances (229,159 words) |
| Word preplexity | 49.6 ]
Lexicon |
Tex1200 1,272 words
1ex3000 3,076 words
1ex6600 6,635 words
[ Recognition data
| Speaker | 3 male, 4 female ]
L Samples | 100 utterances (983 words) |

In the following subsection, we describe the
recognition result obtained using first pass of the
recognizer.

4.1 The effect of “cross-word con-
text approximation”

e The average number of word hypotheses hav-
ing the same word-id, but different start /end-
time for the same word graph density is re-
duced 25-40%. The cpu-time requirement is
also reduced 30-60% compared to the case
of no approximation (Figure 4(a),(b)).

e The word graph density to achieve the same
error rate decreases approximately 50% cormn-

pared to the case without approximation(Figure

5).
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Figure 4: Effect of “cross-word context approxi-
mation” (lex3000)
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Figure 5: Effect of the reduction of word error
rate by applying “cross-word context approxima-
tion” (lex3000)



4.2 The effect of “lenient language These result shows that the use of class bigram

score smearing on lexicon tree” language scores as the expected language scores is

more effective compared to the conventional uni-

¢ The beam width to achieve the same word gram estimation from the point of view of recog-
error rate is reduced using proposed smoothed nition rate and storage effort.

language model scores (class bigram (smoothed)).
However, a simple lenient language model
smearing that uses sum score instead of the

4.3 The result of large vocabulary

minimum score (class bigram (sigma)) has spontaneous speech recognition
no effect for beam width reduction (Figure The experiment using large size lexicon (6,635
6). words) has been carried out.

e The use of class bigram scores achieved the The word error rate, cpu-time, the average num-
word error reduction of 25-30% compared ber of word hypotheses for each word-id are shown
to the case of no approximation. Result for the various word graph densities in Figure
of the conventional unigram estimation is 8,9,10 respectively.
worse than that of no approximation (Fig- . . .
are 7) PP (Fig o The cpu-time requirement could be estimated

' using word graph density and lexicon size
(lexsize).

e The average number of word hypotheses for

a0 each word-id could be also estimated using

L3 f'::j:i;rzm(s' ma) __L word graph density and lexicon size (lez-
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Figure 6: The reduction of beam width using
smoothed language model scores (lex3000). Beam
width is the fixed value of log likelihood. 1.e. The
hypotheses below the certain likelihood become
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Figure 7: The word error rate reduction using
class bigram language score as an expected lan-
guage scores in the tree node (1ex3000)
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Figure 9: Complexity of time domain dependency
on word graph density and lexicon size
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Figure 10: Word error rate dependency on word
graph density and lexicon size

5 Conclusions

‘This paper proposes “cross-word context approxi-
mation” and “lenient language score smearing on
lexicon tree” to reduce the number of word hy-
potheses (to reduce the computational cost) in
word graph generation. The experimental results
using spontaneous dialogue speech show an ap-
proximately 30% reduction of word hypotheses
when applying “cross-word context approxima-
tion”, compared to the case of no approximation.
We also show the use of class bigram language
model scores as the expected language scores in
the lexicon tree achieve the lower error rate by
the reasonable storage effort.

Acknowledgments

The authors would like to thank Hirokazu Masa-
taki for supplying a class bigram language model
on “travel planning corpus”.

References

(1]

{2

=

[10]

(11]

T. Shimizu, S. Monzen, H. Singer, S.
Matsunaga: “Time-Synchronous Continuous
Speech Recognizer Driven by a Context-Free
Grammar,” Proc. of ICASSP’95, pp.584-587,
(1995).

H. Murveit, J. Butzberger, V. Digalakis, M.
Weintraub: “Large Vocabulary Dictation us-
ing SRI’s Decipher Speech Recognition Sys-
tem: Progressive Search Techniques,” Proc.
of ICASSP’93, pp.119-122, (1993).

J.L. Gauvain, L.F. Lamel, G. Adda, M.
Adda-Decker: “The LIMSI Continuous
Speech Dictation Syatem: Evaluation on the
ARPA Wall Street Journal Task,” Proc. of
ICASSP’94, pp.557-560, (1994).

H.Ney, X. Aubert: “A Word Graph Al
gorithm for Large Vocabulary, Continuous
Speech Recognition,” Proc. of ICSLP’94,
pp-1355-1358, (1994).

P.C. Woodland, C.J. Leggetter, J.J. Odell,
V. Valtchev, S.J. Young: “The 1994 HTK

Large Vocabulary Speech Recognition Sys-
tem,” Proc. of ICASSP’95, pp.73-76, (1995).

R. Schwartz, S. Austin: “A Comparison of
Several Approximate Algorithms for Find-
ing Multiple (N-best) Sentence Hypotheses”
Proc. ICASSP’91, pp. 701-704, (1991).

V. Steinbiss, B.H. Tran, H. Ney: “Improve-
ments in Beam Search,” Proc. of ICSLP’94,
pp.2143-2146, (1994).

H. Masataki, S. Matsunaga, Y. Sagisaka:
“Variable-Order Statistical Language Mod-
eling for Continuous Speech Recognition,”
Technical Report of IEICE, SP95-73, pp.1-
6, (1995).

HMMsT. Morimoto et al.: “A Speech and
Language Database for Speech Translation
Research,” Proc. of ICSLP’94, pp.1791-1794,
(1994).

J. Takami, S. Sagayama: “A Successive State
Splitting Algorithm for Efficient Allophone
Modeling,” Proc. ICASSP’92, pp. 573-576,
(1992).

K. Ohkura, M. Sugiyama, S. Sagayama:
“Speaker Adaptation based on Transfer Vec-
tor Field Smoothing with Continuous Mix-
ture Density ,” Proc. ICSLP’92, pp. 369-372,
(1992).



