SLP—-24-17

FEGEA LT I— NN LB X2y 7F -4 OFHA

VaRY— -4
ATR &= BB ERIZEAT
T 619-02 ZUEDHFHR A EN S h 2-2
Tel.: 0774-95-1394 e-mail: gustl@itl.atr.co.jp

HOFEL
) AT, RBVCEREFBRIAS v 7 738 [OFA] LoWTHRD, ZOFI—FEH N, BE
RS A LT EE I N A LEERRERE T o R, 5% U Lo MER MR 482 2 LA TE
72 COFFFBERIZAVE-FTEEF VI, ANAS/AS) a— /32 %FZ Ly + & L7 2000, 3L 053000
KEOEREASA HMM, EEEFNVIE, RWCFF A ha—S2 %28 hy b & L7m 3-gram % vy 7z,
INOHDEFIVE, HEAERATER S (IPA) 12X VEBESATVS, '

ARF s Fa=F [OFH] X, BEFREOESEEFL2EAVLIEICEY, Pentium Il 70+ v 4 300MHz
DA=FTzT7IZB0VTh, ERMBBITETH 5, 2OBOREDRRII0% Thr, T/, SEHTF
g%zw FF4R7 ETHRI CEDPTETHI720, PERRAETF A X2 bTHAMB ICHI2 52 EHTE

R-T—F o BERM o VEHHEALT o X¥vsFa-s

Evaluation of a stack decoder on a Japanese Newspaper
Dictation Task

Mike Schuster

ATR Interpreting Telecommunications Research Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02
Tel. 0774-95-1394 e-mail: gustl@itl.atr.co.jp

Abstract
This paper describes some of the implementation details of the “Nozomi” stack decoder for LVCSR.

The decoder was tested on a Japanese Newspaper Dictation Task using a 5000 word vocabulary. Using
continuous density acoustic models with 2000 and 3000 states trained on the JNAS/ASJ corpora and a
3-gram LM trained on the RWC text corpus, both models provided by the IPA group [9], it was possible
to reach more than 95% word accuracy on the standard test set. With computationally cheap acoustic
models we could achieve around 89% accuracy in nearly realtime on a 300 Mhz Pentium II. Using a
disk-based LM the memory usage could be optimized to 4 MB in total.

key words e speech recognition e Japanese newspaper dictation e one-pass stack decoder

—121—

1 INTRODUCTION

LVCSR is currently limited to workstations and
fast high-end laptops with a lot of memory. To
make LVCSR work on PDAs, cellular phones, user-
interfaces, wrist watches etc., it is necessary find
time- and memory-efficient algorithms. The goal
for implementation of any search engine must be
to minimize time and memory requirements
as well as the overall complexity of the system
while maximizing its flexibility using all available
knowledge sources (pronunciation dictionary, N-gram
LM etc.) to search for the desired output.

There are several approaches to decoding, which
can be distinguished by their basic search strat-
egy: a) the time-synchronous transition network
decoders and the usually time-asynchronous stack
decoders. Stack decoders [3, 5] can be defined as
decoders that use during decoding some kind of a
stack of partial sentence hypotheses each consisting
of a certain number of words. In general the partial
hypotheses on a stack are expanded by complete
words time-synchronously using the pronunciation
dictionary to create new partial hypotheses which
are inserted into other stacks. When all stacks but
the last (result stack) are empty, the result stack
will contain the first best hypothesis, the N-best
hypotheses or the respective lattices depending on
the search mode. Stack decoders operate at least on
two levels of search: a) the outer level, which loops
over the stacks (word-level search), and b) the in-
ner level, which loops over time and states to search
for complete words, starting from the end-time of
the hypothesis to expand, which is called state-level
search or word-within search. Every time a word-
end is found during the time-synchronous word-
within search, its language model score is looked
up using the found word plus its history using the
hypotheses which are to be expanded. Because the
dynamic LM score lookup can take any word his-
tory into account, stack decoders can easily make
use of any kind of N-th order Markov language
model and also of non-Markov language models like
link grammars etc. Especially N-gram models of
any order are simple to implement, which is one of
the major advantages over the transition network
decoders.

In this paper, based on a time-asynchronous stack
decoder framework, it is shown how it is possible
to handle arbitrary order N-grams, how to gener-
ate N-best lists or lattices next to the first best
hypothesis at almost no computational overhead,
how to handle efficiently cross-word acoustic mod-
els of any context order, how to efficiently constrain
the search with word graphs or word pair gram-
mars, and how to use a fast match with delay to
speed up the search, all in one left-to-right search

pass. The details of a disk-based representation of
an N-gram language model are given, which make
it possible to use LMs of arbitrary (file) size in only
a few hundred kB of memory.

2 A ONE-PASS STACK DE-
CODER

The decoder described here is in its basic imple-
mentation similar to the approach described in [5].
The first version of this decoder is described in [6].
A detailed and complete description can be found
in [8], a description of a slighlty older version in
[7]. Because of space limitations this paper con-
centrates on the description of some of the decoder
modules and issues, which were found to be impor-
tant for time- and memory-efficient performance.

2.1 Stack module

The collection of stacks for each time ¢ are ac-
cessed by PUSH() and POP() operations taking
partial hypotheses as arguments. Because they are
used frequently and usually contain a few to several
hundred entries in a typical application, the stacks
(or more precisely lists, because access to their el-
ements is random and not based on a LIFO con-
cept) have to be set up efficiently. The container
types used in other decoders are often special tree-
structured lists, which are ordered by score and
limited in the number of entries. Here a different
method is described which was found to be most
efficient and simple to implement.

Pushing a hypothesis on a stack involves a check
whether a hypothesis being in the same LM state
is already on that stack. If yes, the scores of the
two hypotheses are compared and the better one is
inserted into the stack, the other one discarded. In
case of an N-gram LM the LM state check means to
compare the last M AX (N —1,1) history word IDs.
One word has to be compared as a minimum to not
violate the at least first order Markov assumption
for the complete speech model. Although checking
for LM state equivalence for N-gram LMs can the-
oretically be done in O(1) using a hash table with
the N — 1 words history as the key, it was found
that it is in practice not more efficient than a simple
non-ordered unlimited list that is searched through
linearly up to an average stack size of a few hun-
dred hypotheses. Pushing a hypothesis on a stack
can also improve the upper bound for the score
at this time, which has to be checked for. Pop-
ping a hypothesis from a stack is an O(1) process,
since it doesn’t matter in what order the hypothe-
ses in beam are extended for the implementation
described here.

— 122 —

2.1.1 Lattice generation

Stack decoders can easily generate latlices at little
computational overhead in the first pass by slightly
modifying the LM state check procedure. Instead
of discarding the worse hypothesis in case of LM
state equivalence it can be linked into the lattice.
A pointer on the best arc back has to be updated
to not loose the best hypothesis for the current LM
state and future reference. Compared to the gener-
ation of the first best hypothesis there is only little
overall increase in memory for the storage of the
additional arcs in the lattices (section 3).

2.1.2 N-best list generation

The hypotheses in an N-best list differ by at least
one word ID. This can directly be checked for by
extending the LM state check to the complete his-
tory instead just the M AX (N — 1,1) history word
IDs like necessary for obtaining the first best hy-
pothesis. It can be done either exactly by checking
each word, or approximately by using a hash func-
tion for the history. A lattice within the N-best list,
referred to as N-best lattice, which includes all pos-
sible alignments and pronunciation variants for the
same word ID sequence in the possible paths taken
backwards from a lattice node, can be produced by
merging hypotheses instead of replacing them like
discussed above for the first-best lattices. Com-
pared to the lattice generation this procedure uses
only little additional memory for the extra nodes
of the hypotheses, which are needed because of the
increased LM state space, and only little additional
time. Since for the generation of N-best lists only
the LM state check procedure was modified, they
can be generated in the first pass like lattices.

2.2 N-gram module

A efficient format for the LM was found to be the
following: For a back-off N-gram store all n-grams
with n = 1,2,...,N in a table for each n. Each
entry in a table has a word-ID, its LM probability
and back-off probability, and a pointer to the be-
ginning of the list of extension word entries in the
table holding the (n+1)-grams. For the table with
the N-grams the pointers are not necessary, since
no higher order (N + 1)-grams are following. Each
part of an entry table holding a particular set of
extension words is ordered by its word-IDs to al-
low fast access using a binary search. The number
of a set of extension words on any level n doesn’t
have to be stored because it can be calculated by
subtracting the pointer (on level n— 1) on the cur-
rent set from the next pointer (also on level n — 1)
on the next set. If the next set on level n doesn’t
happen to have any extension words, indicated by

a NULL pointer on level n — 1, the next non-NULL
pointer on level n — 1 has to be searched for, which
is on average not more than a few entries away.

The memory requirements for this N-gram rep-
resentation are 8 bytes per entry for all {n < N}-
grams, and 4 bytes for all N-grams, assuming 4-
byte pointers, 2-byte word IDs and 1-byte repre-
sentations for the LM probability and the back-
off probability, uniformly distributed across their
log-scores, which was found to be a sufficient ac-
curacy to not cause any errors. Access time for
this storage format is of O(1) for the unigrams
and of O((n — 1) - loga(K)) for the {n > 1}-grams
using a binary search, with K being the average
number of words following any n-gram entry. The
average access time can be slightly improved by
caching LM states and their scores in a hash table
for all {n > 1}-grams that have been accessed be-
fore. This improves average access time to O(1) for
already used {n > 1}-grams, but requires an addi-
tional check whether a certain LM state is already
in the hash table or not.

A disk-based representation of the N-gram can
limit memory requirements to a few hundred kB for
N-grams of anysize [10]. The search for the N-gram
scores on disk during the search is of course very
time-consuming and has to be minimized using an
efficient caching scheme. An efficient implementa-
tion was found to be the following: Unigrams are
stored in memory and all {n > 1}-grams are stored
on disk in the exact same format that was used for
the representation in memory, such that looking up
an n-gram can be done using the same algorithm.
A set of extension words following an n-gram is
loaded into temporary memory to run the binary
search for the correct word ID in memory and not
on disk. The LM states that have been used once
are cached in a memory-based hash table to mini-
mize disk access.

2.3 Cross-word models

A procedure to deal with cross-word models of any
order (triphones, quintphones, etc.) incorporating
cross-word effects in a delayed manner was found to
be very efficient in time and memory requirements,
and is especially well suited for a stack decoder:

o Run the state-level search for any set of hy-
potheses to expand with only word-internal
context-dependent models.

e When popping the hypotheses from a stack to
expand, realign the last M words using cross-
word models at the word boundaries before
entering the state-level search to find the ex-
tension words.

— 123 —

e Because cross-word effects are incorporated
with a one-word delay, it is also necessary to
realign the last M words for all hypotheses
on the final result stack.

This procedure as illustrated in Fig. 1 incorporates
all cross-word effects within the last M words, and
is optimal for cross-word triphones with M = 2
for most cases and possibly M = 3, if the word
before the last word is a one-phone word. To cap-
ture all cross-word effects with quintphones theo-
retically M = 5 is necessary, if all words in the
dictionary would be one-phone words.

TIME

== R

STACK TO EXPAND

Fig. 1: Visualization of the method to incorpo-
rate cross-word models of any context order. Cir-
cles denote hyp-nodes, filled circles are the word
boundaries that are corrected by the procedure us-
ing cross-word models before the stack (box) is ex-
panded. In this example only two words are re-
aligned, but there could be more like discussed
in the text. The same procedure is used for the
fast-match.

The realignment for each hypothesis to extend
is in detail done as follows: Take the last M words
and find the correct (cross-word) HMMs for each
phone at the word boundaries which don’t already
cover the maximum available context given the acous-
tic model set. Use a local Viterbi search to find M
new acoustic scores and possibly M — 1 new word
boundaries. Generate M new arcs and M — 1 new
hyp-nodes and replace the old hypothesis end-hyp-
node by the new one.

The correct cross-word HMM model is defined as
‘the model which covers the most context around
the current center-phone. This definition is also
used for finding the correct context-dependent HMM
within words during construction of the tree lexicon
containing context-dependent models given only a
monophone pronunciation dictionary.

Compared to the procedure described in [2], which
locally rescores every word that is found during
the state-level search, the method described here
rescores only words that have been found to be
considerably likely being part of stacks to expand.
The average number of hypotheses to expand per
frame is in general between five and one-hundred

and cross-word rescoring is only applied to those
few. This requires only very little temporary mem-
ory and is fast, because of the low number of hy-
potheses and because of the fact, that most of the
states to be evaluated during rescoring for their ob-
servation likelihood are already in cache.

A potential drawback of this method is, that be-
cause cross-word effects are incorporated delayed,
scores might vary more during the lookahead, which
might require larger beams than if this delay wouldn’t
be used.

2.4 Fast-match with delay

The method to handle arbitrary cross-word effects
is easily extended to allow an efficient acoustic fast-
match with a one-word delay, which in a similar
form without delay is described in [1, 4]. The ba-
sic idea of a fast-match in a stack decoder is to
use simple acoustic models to find possible exten-
sion words, and rescore them locally with better,
but computationally more expensive models. This
avoids the use of expensive models for the initial
state-level search and can speed up the complete
search.

The fast-match procedure described here keeps
the use of the expensive models at a minimum and
is almost identical with the method to incorporate
cross-word models. Instead of using word-within
context-dependent (CD) models for the state-level
search, simple monophones with a low number of
mixtures or small neural-network based models are
used in a context-independent tree-lexicon, and the
found words are inserted in the corresponding stacks.
Rescoring of the last M words including all cross-
word effects is done later using the accurate, but
expensive CD models, but only when a stack is ex-
panded, such that many of the previously found
words will be out of the beam. The difference
to the cross-word procedure from section 2.3 is,
that all phones of the last M words have to be
mapped to their correct CD HMM model, and not
only the ones at the word boundaries. This can
be interpreted as local rescoring with a one-word
delay, which limits the number of necessary rescor-
ing turns per frame to less than ten to one-hundred
for most applications, and requires very little addi-
tional memory.

2.5 Pruning techniques

In the stack decoder described here several effi-
cient pruning techniques to cut logical states, phys-
ical states, mixtures, lexical nodes, words or par-
tial hypothesis with a relatively low score can been
applied. Here a complete description of all these
techniques is given.

— 124 —

Pruning has in general the effect, that the search
becomes faster and uses less memory by increas-
ing the chance of making search errors. There are
many possible ways to prune and it is usually not
hard to come up with new ideas for heuristic prun-
ing. The disadvantage of using many sophisticated
heuristic pruning techniques is, that in general they
are not independent of each other and their out-
come becomes harder to control. Some of therm will
inevitably lead to search errors, whose generating
source will be hard to localize.

2.5.1 Word-within pruning

Word-within (WW) pruning refers here to pruning
of logical states during the forward propagation of
a lexical node. Any of the states in the currently
looked at HMM model are checked for validity. If a
score of a state at time # is more than a word-within
beam width below the best score ever at time ¢ (or
short: below the WWbeam),

Score(state,t) < BestScore(t) — WWbheam,

then the state is discarded.

2.5.2 Word-end pruning

Word-end (WE) pruning has two different func-
tions in this stack decoder:

(1) To prune partial hypotheses that have been
created during the state-level search, but whose
LM state has a too low score.

To prune partial hypotheses from stacks dur-
ing their expansion, due to a rise of the best
score of that stack (at time t), that pushed
once valid hypotheses out of the beam.

(2)

Both of these mechanisms work analog to the word-
within pruning procedure, such that if

Score(hyp,t) < BestScore(t) — W Ebeam,

the partial hypothesis is discarded. Experiments
show that in general a tighter word-end beam can
be used without causing additonal search errors.

2.5.3 Lexical node pruning

In this decoder the lexical nodes (HMM models),
which are held in the active node list alist and
used during the state-level search, are in general
pruned only by the word-within-beam pruning and
can hold as many nodes as necessary. Note that
word-within-pruning doesn’t require an ordered ac-
tive node list.

For an additional pruning strategy, it is also pos-
sible to prune this list by only keeping the N best

active nodes at any time ¢. This requires an order-
ing of the list in some form, but can provide an ef-
fective additional speed-up. Also, because the aver-
age number of active nodes at any frame is approx-
imately proportional to the total search time, it is
possible to approximately set the maximum time
allowed to search through an utterance, which can
be a great advantage during development, when
good beam settings are still unknown.

2.5.4 Mixture pruning

If state-tied continuous-density Gaussian mixture
models with diagonal covariances are used as acous-
tic models, then it is possible to use an effective ad-
ditional pruning strategy during the likelihood cal-

“culation. In general the likelihood calculation takes

a large amount of the search time, and the routine
to look up acoustic likelihoods given a state number
and an observation vector will be fairly optimized.
This makes it difficult to find pruning strategies at
that level that really do lead to a speed up, be-
cause all additional code in this routine makes the
likelihood calculation slower.

Here a pruning strategy was used, that did help
in many cases. The idea is the following: For diag-
onal covariances, the likelihood calculation routine
contains a routine that calculates the distance of
the observation vector to the mixtures, with each
component weighted by the inverse variance for di-
agonal covariances. If this distance becomes larger
than a certain heuristic threshold for a mixture,

Distance(mizture, observation) > Threshold

then the likelihood from this mixture is ignored.
This distance threshold check is done here after
each component of the evaluated vector is added.

2.5.5 Posterior pruning

If neural network acoustic models are used, which
in general provide the posterior probability of a
certain state given the observation vector, then a
simple and effective pruning strategy mentioned in
[?, 7] can be used. If a certain state has a posterior
probability below an heuristic threshold,

Post Prob(state, observation) < Threshold

then this state is completely ignored.

2.5.6 Pruning with triangular beams

Time-asynchronous stack decoders have the disad-
vantage that during the generation of partial hy-
potheses usually not all information at that time
point is available — especially pruning is based on
currently best likelihoods, which might and usually

—125—

will improve the closer the stack expansion time
point comes. This leads to the generation of many
hypotheses which are later not expanded, in the
experiments here up to 95% not expanded partial
hypotheses. This waste of resources can be avoided
partially, when a more aggressive pruning is used
at times when there’s not all information available.

The simplest way to achieve more agressive prun-
ing the further away the state-level search is mov-
ing from its start time ¢,4,¢, is to use triangular
beams. The beam at each time depends on the
position of the current state evaluation time rel-
ative to the start time of the state-level search.
At t = t;10r; the beams (word-within beam, word-
end beam) are at their set width (maximum), at
t = tstare +wordlengthp, ., they become zero (min-
imum). This type of pruning efficiently speeds up
the search and lead in the experiments here to very
few or no search errors compared to the regular
beams.

3 EXPERIMENTS

All experiments were conducted using the described
one-pass stack decoder for the recognition of read
sentences from a Japanese newspaper using a 5000
word pronunciation dictionary with on average 1.5
pronunciations per word. The acoustic models are
gender-dependent decision tree state-clustered Gaus-
slan mixture models trained on 20k sentences per
gender from the ASJ and JNAS database. Acoustic
preprocessing is standard 12-dimensional MFCCs
plus log energy, with applied cepstrum mean sub-
traction per sentence and first derivatives every 10
ms. A trigram LM was trained on around 45 mil-
lion words from the RWC corpus containing four
years of newspaper articles from the Mainichi Shin-
bun, a daily newspaper in Japan. The standard
test data are the first ten sentences from the speak-
ers 006, 014, 017, 021, 026, 089, 102, 115, 122 from
the JNAS database. All acoustic models, initial
language models and the pronunciation dictionary
were kindly provided by the IPA group, who also
defined the test set [9].

Tab. 3 using the parameters from Tab. 5 shows
the results, for which the search parameter settings
were optimized to reach a low word error rate. The
experiments of this task were run in two modes, a
Katakana mode, where all word-IDs and all tran-
scriptions are written only in Katakana, and in a
Kangi mode, where all word IDs and transcriptions
are written like they occur in a newspaper. Best
recognition results in Kanji recognition mode are
5.2% word error rate (WER) for the male using
3000 state models and 4.8% WER for the female
speakers using 2000 state models, if the results are

cleaned from errors that shouldn’t be counted as
errors in Japanese, which can be classified into two
types. Type I errors are due to the fact that there
are no spaces in a regular Japanese text, which were
artificially introduced to define words to build a
pronunciation dictionary and a LM. This leads to
ambiguous word definitions and many errors of the
kind: ’a’ 'while’ < ‘awhile’. Also, in Japanese it
is common and correct to write many words with
the exact same pronunciation and meaning using
different symbols, which occurs in English only for
numbers (Type II errors). The raw outputs from
the recognizer are about 15% relative (1% absolute)
worse, showing that these errors, which are specific
to Japanese, shouldn’t be neglected. The Katakana
results, which hide misrecognition of homonyms oc-
curring in Japanese more frequently than for exam-
ple in English, overestimate the score of interest on
average by about 1% absolute.

MODEL MALE FEMALE | RTF
Kat/Kan | Kat/Kan
129 x 16 | 88.7/87.5 91.8/90.8 9
2000 x 16 | 95.2/93.3 | 96.9/95.2 | 22
3000 x 16 | 96.4/94.8 | 95.9/94.5 23
129 x 16 | 87.9/86.7 | 91.0/90.0 9
2000 x 16 | 94.4/92.6 | 96.1/94.4 | 22
3000 x 16 | 95.6/94.0 | 95.0/93.6 23
Tab. 1: Recognition results for high accu-

racy, cleaned of errors that shouldn’t be counted
in Japanese (upper) and not cleaned (lower),
for Katakana (Kat) and Kanji (Kan) recognition
mode. Cross-word modeling was used.

Tab. 3 using the parameters from Tab. 5 shows
results for experiments that were run to maximize

MODEL M F MEM | RTF
Kat | Kat || (MB)
129 x 16 87.0 | 90.2 10 1.1
2000 x 16 93.0 | 94.6 20 9
2000 x 16 (FM) | 93.0 | 94.6 20 7
129 x 16 87.0 | 90.2 4 3
2000 x 16 93.0 | 94.6 14 14

Tab. 2: Results for high speed and low memory,
with memory-based LM (upper) and disk-based
LM (lower}, not cleaned of errors that shouldn’t be
counted as errors in Japanese. Cross-word models
were used. Fast-match (FM) models were 3-state
monophones with four mixtures each.

decoding speed at a low (around 1%) search er-

— 126 —

ror and minimize memory requirements, with (a) a
regular memory-based trigram LM and (b) a disk-
based LM. Almost realtime performance including
all observation likelihood calculations is possible
with around 11% word error rate using 10 MB of
total memory. The disk-based LM slows down the
search by about a factor of three for the mono-
phones. The realtime factor and memory require-
ments for all results are for a 300 MHz Pentium
1L

The results shown in Tab. 3 compare the time
and memory requirements for generating the first
best hypothesis with the time for generating lat-
tices or N-best lists in the first pass. It can be seen
that the more complicated LM state check for the
N-best lists creates only little overhead, and is al-
most independent of the length of the N-best lists.

SEARCH MODE RTF MEMORY
first best (absolute) 9 20 MB
first best 100% 100%
lattice 107% 106%
N-best list, N = 10 | 113% 100.4%
N-best list, N = 50 | 116% 100.4%
N-best list, N = 100 | 117% 100.5%

Tab. 3: Relative time and memory (as measured
by the UNIX top command) for several search
modes with beams leading to lattices of about 2500
arcs and 500 hyp-nodes, and an average N-best list
length of 90 hypotheses.

4 CONCLUSIONS

It can be concluded that a time-asynchronous stack
decoder is a conceptually attractive framework for
integrating many often needed procedures for speech
recognition tasks in a single decoding pass. Al-
though efficient in memory and faster than the de-
coder mentioned in [9] for the same task, it should
be noted that the speed of a time-asynchronous
stack decoder like implemented here is probably not
optimal for the specific task of generating a first-
best hypothesis or a lattice from a feature vector
sequence, because the globally time-asynchronous
search over the state space results in the genera-
tion of many later not expanded partial hypothe-
ses. Triangular beam pruning avoids this behavior
to some extent. A better solution might be the use
of a time-synchronous stack decoder with multiple
trees, which hasn’t been tried here.

5 ACKNOWLEDGMENTS

This work wouldn’t have been possible without the
support from the IPA group [9]. Prof. Shikano
from NAIST pointed out the specific importance
of cross-word modeling for Japanese.

References

[1] L.R. Bahl, P.V. de Souza, P.S. Gopalakrishnan,
D. Nahamoo, M. Picheny, “A fast match for
continuous speech recognition using allophonic
models”, in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing, pp. I-17 - 1-20, 1992.

[2] L.R. Bahl, P.V. de Souza, P.S. Gopalakrish-
nan, D. Nahamoo, M. Picheny, “Word looka-
head scheme for cross-word right context mod-
els in a stack decoder”, in Proc. Eurospeech, pp.
851-854, Berlin, Germany, 1993.

[3] P.S. Gopalakrishnan, “A tree search strategy
for large vocabulary continuous speech recogni-
tion”, in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Processing, pp. 572-575, 1995.

[4] P.S. Gopalakrishnan, L.R. Bahl, “Fast match-
ing techniques”, in Automatic Speech Recogni-
tion: Advanced Topics Eds. Boston: Kluwer
Academic Publishers, 1996.

[5] S. Renals and M. Hochberg, ”Decoder technol-
ogy for connectionist large vocabulary speech
recognition”, Technical Report CUED/ F-
INFENG/ TR.186, Cambridge University, Eng-
land, 1995.

[6] M. Schuster, ” Nozomi - a fast, memory efficient
one-pass stack decoder”, ASJ spring meeting
1997, pp. 155-156, Yokohama, Japan, 1997.

[71 M. Schuster, “Memory-efficient LVCSR search
using a one-pass stack decoder”, Technical Re-
port TR-IT-0272, ATR Interpreting Telecom-
munications Laboratories; Kyoto, Japan, 1998.

[8] M. Schuster, ”On supervised learning from
sequential data with applications for speech
recognition”, PhD Thesis, Nara Institute of Sci-
ence and Technology, to appear March 1999.

[9] T. Kawahara, et al, ”Common platform of
Japanese large vocabulary continuous speech
recognizer assessment — proposal and initial
results”, Proc. EALREW-98, pp. 117-122,
Tsukuba, Japan, 1998.

[10] M.K. Ravishankar, “Efficient Algorithms for
Speech Recognition”, PhD Thesis, Technial Re-
port CMU-CS-96-143, Pittsburgh, USA, 1996.

— 127 —

129 x 16 2000 x 16 3000 x 16
word-end-beam 30 50 50
word-within-beam 40 80 80
LM-scale 6 11 12
word-deletion-penalty 0 0 0
realtime factor (RTF) 55 24 25
active model nodes/frame 1756 10045 8324
pushed hyps/frame 544 1196 1113
inserted/replaced hyps/frame 92/452 246/950 211/902
extended hyps/frame (average stacksize) 36 25 20
on-demand N-gram smearing no yes yes
triangular beam yes no no
N-gram accesses/frame 20070 21029 18749
cache accesses/frame 19837 20834 18600

Tab. 4: These numbers are based on 25-dimensional feature vectors, all log-likelihoods base 10, the
realtime factor is for 300 Mhz Pentium II and includes observation likelihood calculation. All results in

this table are averaged over genders.

129 x 16 2000 x 16
word-end-beam 20 40
word-within-beam 30 70
LM-scale 6 11
word-deletion-penalty 0 0
maximum model node pruning no 150
mixture pruning no 80
triangular beam pruning yes no
active model nodes/frame 685 2993
pushed hyps/frame 149 408
inserted/replaced) hyps/frame 44/105 97/311
extended hyps/frame (average stacksize) 7.9 12.3
on-demand N-gram smearing no yes
N-gram accesses/frame 2927 8196
cache accesses/frame 2882 8114

Tab. 5: Parameter settings for high speed/low memeory results.

— 128 —

