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Abstract This paper describes a method of learning a mutual belief, necessary for natural language communication with
people, in a process of utterance comprehension by robot. In this method, a system of mutual beliefs is represented by
multiple beliefs, and the weights for the confidence that each of the belief is shared with a human. The beliefs dealt with
in the method include phonemes, lexicon, grammar, influence of behavioral context, and other nonlinguistic bélief. In the
experiment, arm-robot with only a basic language knowledge interacts with human by using language and action. Through the
interaction, robot learned the mutual beliefs and was eventually able to understand even fragmental and ambiguous utterances
according to given situations, and act appropriately. The methods made it possible to integrate the language and cognitive
processes, and thus introducing a new framework for natural communication.
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1. Introduction

Language communication in a daily life is based on the mu-
tual beliefs shared by those who are communicating [1]. The
mutual beliefs are formed through common experiences with
common cognitive ability, and used in the process of utter-
ance production and comprehension. Therefore, utterances
are produced with an assumption that a speaker and a lis-
tener share similar beliefs concerning meaning. Through
these beliefs, a listener can infer the meaning of the utter-
ances. Such mutual beliefs are diverse, since it includes not
only linguistic, but also nonlinguistic beliefs, and varies by
experiences. So, if we want to enable for humans and robots
to communicate with each other the way people do, we need
a language processing method that forms mutual beliefs, and
uses them appropriately in multi-modal interaction.

This paper presents a method, in which a robot can form
mutual beliefs in the multi-modal interaction with a person.
Particularly, the method deals with the beliefs which are not
directly conveyed by utterances spoken by the person. The
robot learns incrementally, in the process of understanding
fragmental and ambiguous utterances, according to situa-
tions. The learning was carried out by using the information
of speech, visual observations and behavioral reinforcement.
The beliefs dealt with in the method include those concern-
ing linguistic information - phonemes, lexicon, grammar -
and nonlinguistic information - attentional gestures, behav-
ioral context, and task-dependent knowledge.

2. Interaction for Forming of Mutual Beliefs

The interactive learning task for forming mutual beliefs was
set up as follows. A robot was set next to a table so that the
robot and a person sitting at the table could see and move the
objects on the table (Fig. 1). The robot initially had certain

Fig. 1 System set-up

basic linguistic beliefs, including a lexicon with a small num-
ber of items and a simple grammar, and could understand
utterances to some extent. By speaking slowly and pausing
briefly between words, and using attentional gestures, the
person asked the robot to move objects (stuffed-toys). If the
robot responded incorrectly, the person slapped the robot’s
hand. The robot would then respond by acting in a differ-
ent way. Through a sequence of such reinforcing interaction,
the robot incrementally learned an expanded set of mutual
beliefs to understand even fragmental and ambiguous utter-
ances according to given situations.

The mutual beliefs were learned in the process of under-
standing fragmental and ambiguous utterances. The confi-
dence that each belief was shared between the robot and the
person was strengthened when the robot showed misunder-
standing of a utterance in its first response, but understood

the utterance correctly by using the belief in the second re-
sponse, invoked by being slapped.

An example, using mutual beliefs in utterance production
by person, and comprehension by robot in the task is as fol-
lows. In the scene shown in Fig. 2, the object on the left,
Kermit, has just been put onto the table. When a person

Fig. 2 Example of forming mutual belief

would like to move Kermit onto the box, the person may
specifically say “Kermit box move-onto”*? In this situation,
if the person assumed that the robot had a belief that a box
is something for something to be moved onto, he may say
“Kermit move-onto”, using a fragmental utterance. More-
over, if the person assumed that the robot believed that an
object moved in the previous action was likely to be the next
target for movement, he might just say “move-onto”. To un-
derstand these fragmental utterances, the robot had to have
similar beliefs, and knew that robot shared these beliefs with
the person.

3. Representation of Mutual Beliefs

In our algorithm, the system of mutual beliefs consists of
beliefs with a confidence that each belief is shared between
the robot and the person. This system is represented by
probabilistic models including gaussian distribution and hid-
den Markov models(HMMs). The confidence in each belief
is represented by a weighting factor for the output of prob-
abilistic model for each belief. The beliefs dealt with are
those concerning lexicon and grammar, behavioral context,
and motion-object relationships.

3.1 Lexicon and Grammar

Let L denote the parametric model for the lexicon including
lexical items ¢;,i = 1,...M. Each item consists of a pair
of concepts and a word. The speech s for the word and the
image v for the concept in lexical item ¢; are respectively rep-
resented by distributions p(s|¢;) and p(vlc;). The lexicon L
includes the concepts of static images of the stuffed toys and
the concepts of motions. The distributions for the concepts
of static image of the stuffed toys are represented by gaus-
sian distributions, and the distributions for the concepts of
motions and the distributions for words are both represented
by HMMs.

Let G denote the grammar. We assume that each phrase
in a sentence utterance describes a landmark, trajector, or
motion, and that the conceptual structure z in each sentence
is expressed with semantic attributes - [motion], [trajector],

I The robot had the lexicon without any functional words, and
fairly simple grammar that represented the occurrence probabil-
ities of the order of the constituents characterized by semantic
attributes in a sentence. The lexicon and grammar was learned
in supervised way by the robot (for details, see [2]~[6]).
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and [landmark]. For the scene in Fig. 2, the corres\ponding
spoken sentence would be a sequence of spoken words, “big
Kermit brown box move-onto”, and the conceptual structure
might be

[trajector] ‘big Kermit’
[landmark] ‘brown box” |,
[motion] ‘move-onto’

where the right column contains the spoken words, and the
left column corresponds to trajector, landmark, and motion.
Let y denote the order of the semantic attributes so that
it represents the order of constituents with the semantic at-
tributes in a sentence. For instance, in the given example of a
spoken sentence, the order is [trajector]-[landmark]-{motion].
The grammar G is represented by a set of occurrence prob-
abilities for possible combinations of order as is represented
by a set of occurrence probabilities for possible combinations
of order as G = {P(y1), P(y2), ---» P(yk)}-

3.2 Behavioral context

Here, the behavioral context is any behavior that can be used
to predict the contents that utterances are likely to describe.
The behavioral context particularly includes the previous ac-
tion and the current attentional gesture. The possibility that
object o is involved as a trajector or landmark in the action
described by the current utterance, given behavioral context
g, is represented by f(o0,¢). In the system, attentional ges-
tures are categorized into two types, pointing and holding
(Fig. 3). We distinguish between the two types of gesture
because a holding gesture may only indicate an attempt to
hold an object in its position, whereas a pointing gesture is
used to indicate direct attention.

(b) Holding
Fig. 3 Attentional gestures

(a) Pointing

f(o,q) takes by as its value, if o is being pointed, by, if o is
being held, b, if o is involved as trajector or landmark in a
previous action, and otherwise, 0.

3.3 Motion-Object relationship

Let R denote a parameter set representing a belief concern-
ing a motion-object relationship. The belief concerning the
relationship between motion W,,, and the features of the tra-
jector and landmark objects, t and [, involved in an action,
is represented by p(t,!|Wm, R) as a gaussian distribution of
vector oy = [ot, 00 — ol,ol]T. Here, R, o; and o; denote,

Behavioral Context

respectively, the parameter set representing this belief, the
features of the trajectory, and the landmark object.

4. Utterance Comprehension

In this paper, we define utterance comprehension as inferring
the action which the utterance describes. Utterances are un-
derstood by using beliefs relating to the situation. Situation
includes the allocation of objects on the table, attentional
gestures used during utterance, and objects used in the pre-
vious action. An action is represented by the trajector t and
trajectory of the motion u. Given behavioral context g, the
beliefs (lexicon L, grammar G, and the effect of behavioral
context B, motion-object relationship R), and the confidence
of the beliefs ' = [v1,...,74] , the corresponding action un-
derstood to reflect the meaning of speech s is determined by
maximizing the decision function (1).

5. Learning of Parameters for Mutual Be-
liefs

Let s; denote the ith utterance during the course of learning.
And let {t;,u;} denote the correct response expected by the
human.

The parameters for the beliefs, L, G, R and B, are learned
by using Bayesian learning method. This learning takes place
after each episode in which the robot showed correct under-
standing of utterance s; in its first response or in the second
response.

The parameters for the confidence, ', are optimized incre-
mentally through the sequence of episodes so as to minimize
the number of decision errors. If the robot showed correct
understanding of utterance s; in its first response or in the
second response, loss {; is given as
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If the robot showed correct understanding of s; neither in
the first nor second responses, the robot cannot obtain the
information of the correct action {t;, u;} and loss [; is set to 0
for convenience. The loss ; is used to calculate global loss at
the ith episode, L; = Z;zl l;. The parameters for the mu-
tual beliefs are learned after each episode in which the first
response is incorrect and the second response is correct. The
global loss L; is minimized by a gradient descent algorithm,
and parameters are updated until the parameter converges.

6. Experiments

6.1 Condition

The experiment was done using a set of data includ-



ing speech, scenery with objects, and behavioral con-
text(pointing gestures, holding gestures, and previous ac-
tions). Along with each set of data, a correct response la-
beled by human, was given. In the experiment, response by
the robat for a set of data was automatically checked against
pre-labeled correct response, therefore, we were able to exe-
cute a simulated experiment.

Speech was represented by using mel-scale cepstrum coef-

ficients and their delta parameters (32 dimensional). Static
object features captured from the camera device were rep-
resented by their size (one dimensional), color (three dimen-
sional: L*,a*,6*), and shape (two dimensional: width /height,
squareness). Motion was represented by a sequence of coordi-
nates (two dimensional: vertical and horizontal) and velocity
(two dimensional). For an attentional gesture in a behav-
ioral context, because pointing induces direct attention, we
defined by, as having an enough large value 100.

Each of motion-object relationship model R has been ini-
tialized with 100 randomly selected objects.

Initially, confidence measure was set to a given parame-
ter (v1 = 2 = 05,73 = v = 0.0). Note that the con-
fidence measure in this experiment was defined such that
(M + 12+ = 1). Also, 74 was separated into two indi-
vidual confidence measures (74,1,74,2), where 74,1 indicate
confidence for gestural attention (y4; = ~4 - by), and y49
indicate confidence for behavioral context(ys,2 = v4 - be).

Interactions for the experiment were classified into three
categories depending on the level of difficulty. where the level
of difficulty is different. ’

In the experiment, we used two sequences of utterances,
sequence A and sequence B (128 utterances for each set).

i) Sequence A

In sequence A, no information was omitted from the ut-
terances used in the first 32 episodes. Figure 4(a) shows an
example of this type of interaction. The utterance is “Kermit
Elmo put-beside”, in response to which the human expected
the robot to put Kermit beside Elmo.

The utterances from episodes 33 through 64 required an
understanding of the behavioral context. Figure 4(b) shows
an example of this type of interaction. The utterance is
“Green toy-box blue toy-box jump-over”, where there are
two green toy-boxes in a scene, one held by the human and
the other on the table. Because the human expects the hold-
ing action to attract attention to the held object, the correct
action is for the robot to grab the green toy-box held by the
human and make it jump over the blue toy-box.

For episodes 65 through 128, the human made a fragmen-
tal utterance. Figure 4(c) shows an example of this type of
interaction. In this example, the utterance is “move-onto”,
while Kermit is held by the human. The response expected
of the robot is to take Kermit from from the human’s hand
and move it onto the toy-box.

ii) Segquence B
In sequence B, fragmental utterances were used in all 128

episodes. For comparison, the last 64 episodes in sequence B
were the same as in sequence A.

6.2 Results

The error rate for sequence A in Fig. 6(a) clearly show that
the robot was able to communicate better with learning. The

Green toy-box
Blue toy-box
Jump-over "

(a) . (b)

" Kermit Elmo Put-beside "

-" Move-onto "

(c)
Fig. 4 Utterance types

effect of learning can be seen in Fig. 7(a), where a sharp dis-
tribution in the motion-object relationship belief represent
a belief for squareness of landmark object in motion “move-
onto”. Also, the increased confidence in the motion-object
relationship belief (Fig. 8(c)) after episode 64 show that robot
is learning to use the motion-object relationship belief. How-
ever, the error rate for sequence B after episode 96 (Fig. 6(b))
did not match that for sequence A, despite the same episode
sequences being used. The reason for this difference is il-
lustrated in Figs. 7(a),(b). With many successful episodes
in sequence A, the robot had already developed a belief by
episode 64. Although, with sequence B, a lack of successful
episodes early on meant more episodes were needed for the
robot to develop a belief.

Figures 5(a)-(c) show generated actions as the results of
the utterance comprehension after learning. The differences
in the calculated log probabilities between the first and the
second candidates for the decision are also shown.

In Fig. 5(a), the human said “Lift”, indicating that the
robot should lift the Kermit in his hand. The Kermit held
by the human was chosen as the first candidate. The details
of the log probability show that, for this example, the behav-
ioral context belief based on the human’s hand was effective.

In Fig. 5(b), the object on the left, Barba, had been put
onto the table in the previous action. The person said “move-
onto”, meaning to put Barba on the toy-box. The use of the
beliefs on behavioral context and motion-object relationship
were effective to obtain the correct comprehension..

In Fig. 5(c), the object on the right, the big Kermit, had
been put onto the table in the previous action. The human
said “Grover small Kermit jump-over”, meaning that Grover
should jump-over the small Kermit on the toy-box. The
result log probabilities show a large difference in the belief
concerning object concepts because the object belief in the
first candidate fits the description of “small Kermit” better.
In the first two examples, the behavioral context belief was a
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Fig. 5 Results of interaction

factor in understanding an utterance, but in this example the
object belief which was much stronger than the behavioral
context belief, was effective for correct comprehension.

7. Discussion

Although the experiment results showed that the robot could
learn the mutual beliefs, which is useful to understand am-
biguous utterances. It is interesting to investigate whether a
human is able to assume similar mutual beliefs through the
interaction. Future work includes such investigation, and the
expansion of the methods for more natural language commu-
nication between people and robots.

8. Related works

Recently communication between a human and a robot has
been attracting interest, and there have been the several
studies applying a theory of mind. In [8][9], an infant-like hu-
manoid robot was developed to interact with humans, but the
interaction did not include speech. In (7], the importance of
gestures in utterance comprehension was shown in the com-
munication of human and humanoid robots. Although, [10]
included no mind-reading mechanism in the robot, the robot
could use gestures to resolve visual ambiguities in dialogue.

In all of these studies, however, the mutual beliefs were
pre-defined before interaction with a human, and could not
be changed and expanded for natural communication.

9. Conclusion

The method making it possible for a robot to learn the mu-
tual beliefs in the process of utterance comprehension in
multi-modal interaction with a human was presented. Once
mutual beliefs are established between a human and a robot,
the robot can understand even a difficult utterance, such as
a fragmental utterance. Just as humans achieve communica-
tion by using a set of mutual beliefs, the robot system is ca-
pable of achieving communication by building mutual beliefs
and using theses beliefs to understand utterances according
to situations.
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