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Abstract This paper summarizes the methods by which a robot can learn mutual beliefs necessary for language
communication with people. The learning is carried out in unsupervised ways based on joint perception and interac-
tion, combining the information of raw speech and visual observations and behavioral reinforcement in probabilistic
framework. The beliefs delt with in the methods include phonemes, lexicon, grammar, the influence of behavioral
context, and other nonlinguistic belief. In experiments a robot that initially had no linguistic knowledge was eventually
able to understand even fragmental and ambiguous utterances according to given Situations, and act appropriately.
The methods made it possible to reflect the embodied and dynamic aspects of language in the learning process, and
they can be extended to provide more natural communication between people and robots.

Key words robot, language, mutual belief, communication, learning



1. Introduction

Language communication in daily life is based on the mu-
tual beliefs shared by those who are communicating [1].
The mutual beliefs are formed through common experi-
ences based on common cognitive ability, and are used
in the process of utterance production and comprehen-
sion. Such mutual beliefs are diverse including not only
linguistic but also nonliguistic beliefs, and changes with
the experiences. So if we want to make it possible for
human and robot to communicate with the same way
people do, we need a language-processing paradigm that
reflects the cognitive ability of human and the common
experiences shared by a person and a robot.

This paper summarizes the methods by which a robot
can learn the mutual beliefs needed for multimodal lan-
guage communication with a person (for details, see [2]~
[6]). The learning is based on joint perception and inter-
action, and it uses the information of raw speech and vi-
sual observations and behavioral reinforcement, and this
information is integrated in a probabilistic framework.
The learned mutual beliefs include phonemes, lexicon,
grammar, the influence of behavioral context, and task-
specific knowledge.

2. Learning Task

The learning task in the present work is set up as follows.
A robot is set alongside a table, and a person and the
robot see and move the objects on the table as shown
in Fig. 1. The robot initially has no concepts about the
specific objects or the ways they can be moved, nor does
it have any linguistic knowledge. The person teaches the
robot by speaking into a microphone, slowly and pausing
briefly between words, while pointing to or moving the
objects on the table. After the robot learns basic lin-
guistic mutual beliefs through a sequence of such learn-
ing episodes, then the person asks the robot to move
objects. If the robot responds wrongly, the person slaps
the robot’s hand. Then, the robot acts in a different
way. Through a sequence of such reinforcing episodes,
the robot expands the mutual beliefs until it can under-
stand even fragmental utterances.

3. Algorithm Outline

The robot directs its attention to objects that have been
put on the table, the ones being pointed to by the per-
son, and the moving ones. This joint perception is one
basis of learning. When attention is given to objects
and the person speaks, the observations of those objects

Fig. 1 System configuration

are associated with that speech. The associated speech
and image data constitutes a set of pairs that is used for
learning. The interaction is the other basis of learning,
and the reinforcement information is given by slapping
the robot’s hand. ‘

The robot learns the mutual beliefs in unsupervised:
way by using the information provided by the raw speech
and visual observations and behavioral réinforcement,
and these mutual beliefs are represented by a graphical
model including hidden Markov models (HMMs). It first
learns the speech units like phonemes and the lexicon,
which consits of the lexical items for the concepts on the
objects, simultaneously by using a set comprising the im-
ages of static objects and the word utterances describing
those objects. It also learns the lexical items for the con-
cepts of motions by using a set comprising the images,
in each of which the person is moving an object, and the
word utterances describing those motions. Then it learns
the grammar by using a set comprising images, in each
of which the person is moving an object, and the sen-
tence utterances describing those scenes. In this process,
the concepts of motions work to represent the trajector-
landmark relationships between the individual concepts
correspoding to the words in the sentence utterances.
Finally, it learns the mutual beliefs in the process of un-
derstanding fragmental utterances. It does this by using
the reinforcement information in an iterative way.These
mutual beliefs can consist not only of linguistic infor-
mation but also of non-linguistic information related to
behavioral context and task-specific knowledge.

4. Experimental Setup

The robot had a arm (seven degrees freedom) with a hand
(one degree of freedom), and a camera unit. The cam-
era unit contained three separate CCDs so that three-
dimensional information about the scenes could be ob-
tained. A close-talk microphone was used for speech
input, and the speech was represented by using Mel-
scale cepstrum coefficients and their delta parameters
(twenty-five dimensional). The visual observations were
represented by using the such features as position on the
table (two-dimensional: horizontal and vertical coordi-
nates), velocity (two-dimensional), color (three-dimen-
sional: L*a*b* parameters), size (one-dimensional), and
shape (two-dimensional). The system’s attention was re-
stricted to objects within 90 cm of the camera unit, and a
person using eleven stuffed toys and four boxes as objects
taught language to the system under acoustic conditions
typical of an office environment.

5. Learning of Phonemes and the Lex-
icon

5.1 Algorithm
Let C' = {e1,ca,...,cm} be the set of M lexical items.
Suppose that M is unknown. Suppose that a spoken
word S and corresponding object image V occur at the
same time, and that each spoken word and object im-
age pair correspond to a lexical item in C. Also suppose
that the set of the pairs of a word utterance sample and
an object image sample, D; = {(s1,v1), ..., (sn,, 0N, )}, 18



given as learning data. Then we want to estimate M as
well as probability density functions p(S|c;) and p(Vic;)
(i = 1,..., M), for the probabilistic model L of the lexi-
con.

Because the difference between the features of the spo-
ken word samples in a lexical item ordinary does not
reflect the difference between the features of the object
image samples in the lexical item, we can assume that
in each lexical item the speech features S and image fea-
tures V are independent. That is,

p(S, V|Ct) = p(S|0i)p(VlCi)7 (’L =1, "'7A4)' (1)

Therefore, the joint probability density function p(S, V)
can be written as

M

p(S,V) =Y p(Sle)p(Vie) Plei). 2
i=1

If the number of lexical items, M = m, is given, the es-
timate of the lexicon including m items can be obtained
by maximizing the likelihood of joint probability density
function p(S, V) as

~ N

L, = argmax Hp(si, Ui|Lim)-

m =1

3)

Because M is not actually given, M has to be estimated.
The lexicon represents a mapping between words and ob-
ject image categories, and if this mapping is to be efficient
in language communication, it can be assumed to max-
imizes the mutual information I[(S,V’) between spoken
word S and object image V with the smallest number of
lexical items. Therefore, the estimate L of the lexicon
is obtained by choosing from among the estimates L
maximizing the estimate of mutual information the one
with the smallest m. The estimate of mutual information
is obtained by leave-one-out cross-validation.

This principle for the learning of the probabilistic
model for the lexicon is also applied to the learning of the
probabilistic models for speech-units. From the speech-
unit sets that maximize the estimate of mutual infor-
mation is chosen the one with the smallest number of
speech units. In a concrete optimization algorithm, Hid-
den Markov models (HMMs), each of which has left-to-
right state structure, are used to represent the speech-
units, which compose probabilistic models for spoken
words. Multivariate normal p.d.f.s are used to represent
the static concepts of object images. The details of this
learning method have been described in [3].

In addition, the lexical items for the motion of moving
objects are learned as the concepts of relation between a
trajector and a landmark. In Fig. 2, for instance, if the
stuffed toy in the middle and the box at the right side
are considered landmarks, the movement of the trajector
is understood as jump over and move onto.

The concepts of motions are represented by HMMs for
the trajectories of moved objects in appropriate coordi-
nates based on the positions of a trajector and a land-
mark. Because the information on the appropriate coor-
dinates and the landmark selected in each scene is not
observed in the learning data, the HHMs of the motions
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Fig. 3 The estimated value of mutual

information vs. the numbers of
speech-units and lexical items

are learned while the coordinates and the landmarks are
being inferred [4].
5.2 Experiment

The learning data included one hundred ninety pairs of
spoken-word and object image samples, each of which
corresponded to one of ten lexical items. The words for
lexical items were randomly selected from a Japanese
dictionary. We can see in Fig. 3, which shows the es-
timates of the mutual information obtained when the
number of speech units and the number of lexical items
were changed, that the estimates of mutual information
was maximized when eight speech-units and fifteen lex-
ical items were used. The lexicon acquired is listed in
Table 1, where the acquired words are represented by
the sequence of the acquired speech units, which are de-
noted by indices. We can see that seven lexical items
were suitably learned in such a way that there was a
one-to-one mapping between the acquired lexical items
and the lexical items used in learning data. And we can
see that some speech units seem to correspond to par-
ticular phonemes: speech units 2 and 8 are respectively
mapped to vowels /o/ and /e/.

6. Learning of Grammar

6.1 Algorithm
The set of the pairs of dynamic action image and sen-
tence utterance samples, D, = {(s1,v1), (s2,02),.--,
(sn,,vN,)}, is given as learning data. It is supposed
that each utterance is based on stochastic grammar G
and describes the corresponding image. The grammar
G is learned by maximizing the likelihood of the joint
probability density function p(s,v) of utterance s and
dynamic image v. The joint probability density func-
tion p(s,v) is represented with an internal structure that

7_



Table. 1 The lexical items acquired by the
proposed method

acquired word - spoken word | concept
13 aru Barba
51478 kanke: Kermit
652357 kyo:iku red
5163 kuwashi: blue
2563 ko:shiki green
235 koNya big
651852 20370 small
4867 uery Dumbo
487 uer Dumbo
25138 okage Elmo
2517388 okage Elmo
5141835478 | kagayaku Grover
54185478 kagayakuy Grover
54185478 kagayaku Grover
51418651478 kagayaku Grover
65141354783 kagayaku Grover

includes the parameters of the grammar G and the con-
ceptual structure z that the utterance means.

The conceptual structure used here is expressed with
semantic attributes - [motion], [trajector], and [land-
mark] - which are initially given to the system and are
fixed. For instance, when the image is the one shown in
Fig. 2 and the corresponding utterance is the sequence
of spoken words, ‘big Kermit brown box move-onto’, the
conceptual structure might be

[trajector] big Kermit
[landmark] brown boz |,
[motion) move-onto

where in the right-hand column are the spoken word sub-
sequences corresponding to trajector, landmark and mo-
tion.

Let y denote the order of semantic attributes, which
represents the order of constituents with the semantic
attributes in an utterance. For instance, in the above
utterace example, the order is [trajector]-[landmark]-
[motion]. Suppose that grammar is represented by the
set of the occurrence probabilities of the possible orders
as G = {P(y1), P(y2), ..., P(yr)}. The joint probability
density function conditioned by the estimated lexicon pa-
rameters L and the grammar G is written as

pls,vlL. G)
= mzaxp(S|z, L,G)p(V]z, L)

= max {p(S\z, L.@)

X plult,t, Won, Lp(t|We, Lp(UIWe, )| (4)

where ¢, [ and u are respectively a trajector object, a
landmark object, and the trajectory of the movement of
t in the image v. W,,, W;, and W, are respectively word
sequences corresponding to the motion, trajector, and
landmark in the conceptual structure z.

The estimate of grammar G is obtained by maximizing
the likelihood of this function with regard to the learning

data as ‘
NQ
G = argmapr(si,vim,G). (5)

” i=1

Here the concept of motion represents the relationship
between a trajector object and a landmark object in the
form of p(ult,l, Wen, L).

An utterance asking the robot to move a object is un-
derstood using the lexicon L and the grammar G which
have been learned so far, and one of the objects in the
current scene is accordingly grasped and moved by the
robot arm. The algorithm understanding speech s infers
the conceptual structure Z and generates the dynamic
image 0 of the action, which consists of the trajectory u
of trajector t, as

& = argmax p(s,v|L, G). (6)

The robot arm is controlled according to the generated
trajectory u. The utterance-understanding algorithm
has been described in detail elsewhere [5].

6.2 Experiments

Seventy-two utterance and dynamic image pairs were
given as learning data. The average number of words in
an utterance was 3.5 and the average number of objects
in an image was 4.7. The lexicon consisted of twenty-
one lexical items: 14 for static concepts of objects and
7 for motions. The utterances were rather simple. For
example, one dynamic image showed a person moving
a small Elmo onto a green box, and the corresponding
sentence was ‘move-onto small Elmo green boz.” The es-
timated values P(y) of the occurrence probabilities P(y)
of attribute order y are listed in Table 2.

Table. 2 The estimated probabilities in
the grammar

attribute order y B(y) | P(y)
[motion] [trajector] [landmark] | 0.38 | 0.46
[motion] [landmark] 0.25 | 0.25
[motion] 0.17 | 0.17
[motion] [trajector] 0.17 | 0.13
[motion] [landmark][trajector] | 0.04 | 0.00

Example of the action generated by correct inference is
shown with the differences of calculated log probabilities
between the first and fifth candidates of the decision in
Fig. 4. We can see that the difference of the probabilities
with respect to the trajectory of the motion was effective
in correcting the error in speech recognition.

7. Forming of Mutual Beliefs

7.1 Algorithm
The system of mutual beliefs is represented by the sum
of weighted beliefs, each weighting value representing the
confidence that each belief is shared between the robot
and the person. The mutual beliefs are learned in the
process of the understanding of fragmental utterances.
Each belief is learned incrementally during the learning
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Fig. 4 Example of utterance comprehen-
sion

course. The confidence on a belief is strengthened, when
the robot shows misunderstanding a utterance in its fisrt
response, and understand it correctly by using the be-
lief in the second response invoked by being slapped. In
addition to dealing with linguistic information, the algo-
rithm deals with nonlinguistic information, two examples
of which are the following;:

e The possibility that object o is involved as a tra-
jector or landmark in the action described by the current
utterance, given behavioral context g, is represented by
function f(o,q). It takes as its value by, if o is being held,
be if 0 is involved in a previous action, and 0 otherwise.

e The relationship between motion W,, and the fea-
tures of the involved objects, t and [, is represented by
gaussian p(¢,{{W,,).

The corresponding behavior v = {u, ¢} understood to be
the meaning of speech s is determined by maximizing the
following decision function:

U(s,t,u,q,L,G, R, B,T)
= max [71 logp(s|z, L, G)

7 {Jogp(u|wm,Z) +log p(t|We, L) + logp(um,i)}

+73 Ing(trllevR)

7% {f<t7Q7B)+f(qu1B)}] (7)

where ' = {v;,...,7,} are the set of weights, R is the
set of prameters for p(t,1|W,,), and B is the set of the
paremeters {b,,b.}. I' are learned incrementally based
on minimum decision error criterion.

7.2 Experiments
R was learned when the robot acts correctly according to
each utterance by using the Bayesian learning method.
And B and T' were learned when the robot acts incor-
rectly in the first response and acts correctly next. At
the beginning of the course of learning were given ut-
terances that were complete sentences (e.g., “move-onto
green kermit red box”). Then sentences were gradually
getting fragmental ( e.g. “move-onto” ). The changes of
the values of vy, 3, and ~v4b. are shown in Fig. 5 (a)-
{¢). We can see that each value was adapted according
to the ambiguity of the given sentences. Figure 5 (d)
shows the comprehension error rates during the course
of the episodes, along with the error rates obtained by

0. 0.
06| O .
» i
> 04 - F
02 ¢ r—f\_‘
64 128 % 64 128
Episode Episode
(a)

Error rate[%]
N

32 128 32

Episode
(9) (d)
Fig. 5 The change of the values of weights
(a)-(c), and error rate (d); during
the learning course.

684
Sequence

Move-onto

Speech

; Behavioral  Motion-Object
Motion  “Context.  Relationship

Fig. 6 Example of the comprehension of
fragmental utterance

using the initial parameter values without learning.

In order to understand fragment utterances correctly
the robot had to use the beliefs which have been learned
enough and its weight has been made large. Such beliefs
can be assumed to be mutual beliefs of the person and
the robot. An example of the action generated by cor-
rect inference is shown with calculated log probabilities
in Fig. 6, where we can see that each non-linguistic belief
was appropriately used in understanding the utterance.
Details of this learning are described in [6]

8. Discussion

In the presented methods, the initial setting for the learn-
ing was decided by taking account of the generality and
efficiency of the learning. The robot could give its atten-
tion to the objects in particular states. The conceptual
attributes - [motion], [trajector], and [landmark] - were
given beforehand because they would be general and es-
sential in linguistic and other cognitive processes. We
may use different conceptual attributes to make the pro-
cess of language acquisition more general and efficient.
The initial setting would depend on the task and the



situation that the robot has to manage.

Although the experimental results showed that the
robot could learn the mutual beliefs through the inter-
active with a person, the learned mutual beliefs were
actually the mutual beliefs assumed by the robot. It
is interesting to investigate whether the person is able
to assume similar mutual beliefs through the interaction
with the robot.

The method described here can be improved by ex-
tending them to learn the lexicon, grammar, and non-
linguisitc beliefs simultaneous, to learn autonomously, to
deal with continuous speech.

9. Related work

Language acquisition by machines has been attracting
interest in various research areas [7], and there have been
several pioneering studies. Siskind’s algorithm [8] learned
a word-to-meaning mapping by using a set of pairs each
consisting of a sentence and a collection of its possible
meanings represented symbolically with Jackendoff-style
expression, and it successfully addressed the problems
due to homonyms and to noisy learning data. There
have also been some studies on the use of semantic infor-
mation in the learning of syntactic rules[9], [10]. Visual
rather than symbolic information has also been used in
word-to-meaning learning tasks [11]~{13], and the judg-
ment of whether or not the system’s response is appro-
priate has also been used in[14]. A spoken-word acqui-
sition algorithm based on the unsupervised clustering of
speech tokens has already been described [15],[16]. Fur-
thermore, an algorithm for the learning of stochastic reg-
ular grammar in a visually grounded way was presented
in [12]. In all these algorithms, owever, some categories
of phonemes and meanings or some values for threshold
for the clustering must be specified beforehand. Thus
they are neither expandable nor adaptive. Nor do they
deal with spatiotemporal information about the mean-
ings of utterances, even though it should be processed in
natural communication.

There have also been many interesting reports on
human-robot language communication, such as{17]~
[21].

10. Conclusion

A framework making it possible to reflect the embodied
and dynamic aspects of language in the learning process
was presented. It combines linguistic process and other
cognitive process and it deals with speech information,
visual information, and behavioral information in a uni-
fied way. It also combines phonetic, syntactic, seman-
tic, and pragmatic functions in language processing. It
can adaptively learn the mutual belief needed for utter-
ance comprehension in multimodal communication and
can understand ambiguous and fragmental utterances. It
could be extended to provide more natural communica-
tion between people and robots.
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