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Noise Speech Recognition based on Robust Features and A Model-Based Noise
Compensation evaluated on Aurora-2 Task
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Abstract We have evaluated several feature-based and a model-based method for robust speech reco:gnition in noise. The evaluation was
performed on Aurora 2 task. We show that after a sub-band based spectral subtraction, features can be more robust to additive noise. We
also report a robust feature set derived from differential power spectrum (DPS), which is not only robust to additive noise, but also robust to
spectrum colorization due to channel effects. When the clean training set is available, we show that a model-based noise compensation
method can be effective to improve system robustness to noise. Given the testing sets, as a whole, the feature-based methods can yield about
22% relative improvement in accuracy for multi-condition training task, and the model-based method can have about 63% relative

performance improvement when systems were trained on clean training set.
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1. Introduction

Speech recognition systems have to be operated in
situations where it is not possible to control the acoustic
environments. This may cause mismatch between the
training and testing conditions. Varieties of methods have
been proposed to cope with this problem. They can be
categorized into three approaches. One approach can be
denoted as front-end preprocessing of noisy speech signals.
The second approach is robust feature extraction approach,
and the third one is denoted as the model-based noise
compensation approach. We report our evaluation results of
robust feature extraction methods and a model-based noise
compensation method on Aurora 2 task [1], which is a
noise-contaminated version of the TI-DIGITS database. The
speech in the task have been down-sampled from 20kHz to
8kHz and contaminated by eight kinds of noise in seven
different Signal-to-Noise (SNR) conditions. Speech signals
in the task were also contaminated by channel distortion,
resulting in spectrum colorization.

Generally speaking, if speech signals in testing
environments can be collected, it would be straightforward
to train a speech recognition system based on the collected
data. This is denoted as multi-condition training. Methods
based on robust feature extraction can go beyond in
performances obtained by standard speech features, such as
MFCC and LPCC, by introducing robustness to the
extracted features. For example, spectral subtraction is
carried out in the linear spectral domain, and as a result, the
features extracted are more robust to additive noise than the
standard features. In the spectral subtraction method, noise
spectrum is required to be estimated. In this paper, we
report two methods for noise spectrum estimation. One
method makes use of long-term average of noisy spectrum,
and the other method makes use of long-term Fourier
analysis. Once the noise spectrum has been estimated, it is
applied to a sub-band based spectral subtraction method,
where spectral subtraction is carried out in each sub-band in
mel-scale. Besides the above method, a differential
procedure is proposed before the binning stage of MFCC
feature extraction process. The obtained linear spectrum is
denoted as Differential Power Spectrum (DPS). We will
show that MFCCs derived from DPS can effectively

improve system robustness to noise.

In many situations, a system only has training data
collected in clean conditions. Given the speech features are
simple, e.g., MFCCs, it is possible to explicitly make a
mathematical model approximating the noise effects on
speech features. This is one of the motivations for the
model-based approach. Varicties of methods have been
proposed in this category. In this paper, we employ a
non-linear mean transformation method, Log-Add noise
compensation method [2], where mean of clean speech
models is transformed before speech recognition. We will
show through experiments on the Aurora 2 task that it can

effectively improve system robustness to additive noise.

2. Feature based robust speech recognition

2.1 Spectral subtraction based approach

Spectral subtraction has been proven to be an effective
technique to enhance speech. This method involves two
problems, i.e., the estimation of noise power spectrum and
its subtraction from the power spectrum of noisy speech
signal. We have investigated in [3] several noise estimation
methods and a sub-band based subtraction strategy.
Experiments showed that this approach outperformed the
traditional spectral subtraction [4] for various tasks. Here we
assess two ideas for noise estimation and the sub-band based

spectral subtraction.

2.1.1 Noise estimation

a) Long-term average

An intuitive way to achieve noise spectrum is to estimate
it from the non-speech portion of the signal. This, however,
will need a speech signal detector (SSD), which can
distinguish speech segments from non-speech segments. To
avoid a SSD, Flores et al [5] proposed to use the average of
M consecutive frames of short-term power spectra of noisy
speech signal as the noise estimate, i.e.,

NG.f)== S¥G.p M
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where N(,f)is the noise estimate at the time instant i,
Y(j,f)is the power spectrum of the jth frame of noisy speech.
Inspired from this idea, we assume that all frames of speech
for a test utterance are available simultaneously and use the
average of the short-term power spectra over all frames as

the noise estimate, namely,
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where N is the number of frames for the given utterance.
Note that in this approach, all frames in one utterance share
a single noise estimate. We call this method long-term
average (LTA).

b) Long-term Fourier analysis method

It was found that phonetic information of speech is
encoded in the changes of the speech spectrum over time.
Relatively less phonetic information is encapsulated in the
long-term speech -spectrum. Noise, however, can be treated
as a stationary process. Long-term spectrum will provide a
good estimate of noise. Based on this fact, we propose to

estimate noise using long-term Fourier analysis, i.e.,
. . 1 2
NG, f)=N(f)= El,’F[Y(l)W(l)]I 3)

where (] denotes Fourier Transform, y(/) is the discrete
speech signal for a whole utterance, w() is a window

function, ¢ a normalization factor which. is defined as

¢=LYw@®, and L is the length of the Fourier
1

Transform.

Noting that the noise effect estimated from Eq. (3) has a
much longer length than that of short-term power spectrum,
we therefore need to warp it to have a same length as the
power spectrum of each frame. We should also point out that
the short-term power spectra should be normalized in a
similar way as in Eq. (3) before one subtracts this noise

estimate from them.

2.1.2

In [3], we proposed a sub-band based spectral subtraction

Sub-band based spectral subtraction

strategy. We show that if we split the full-band signal into
sub-band on the mel-scale and the cutoff frequencies of each
sub-band are set to be same as what adopted in the mel-scale
triangle filter banks, the sub-band based subtraction can be

explicitly expressed as

B = {Ey(k)~aEﬁ(k),if By (k) > {5 By () @
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where E;’z (k) is the output of the kth triangle filter when
the noisy speech power spectrum Y(,f) is passed through
the triangle filter bank, and E% (k) the output of the same

filter with its input being NG.f), and o«* and g* are

sub-band dependent over-estimation factor and spectral

flooring respectively.

2.2 MFCCs
Spectrum

derived from Differential Power

If we denote the power spectrum of the ith frame of
speech signal as ‘Y(i,k), the differential power spectrum
(DPS) can be defined by following difference equation

DG, k)= li;b,Y(i,k +0) &)
=

We have investigated to use the DPS to represent speech
signal and found that the MFCC derived from some special
forms of DPS resulted features more robust to noise than the
conventional MFCCs [6].

DPS1:  DG,k)=Y(i,k)-Y(i,k+1) (6a)

DPS2:  D(,k)=Y(i,k)-Y(i,k+2) (6b)

In this paper, we investigate to use DPS1 for robust
speech recognition. We pass |D(i,k)| defined in Eq. (6a)
through a mel-scaled triangular filter band and convert it
into some MFCC-like feature coefficients. We assess this
new MFCC feature vector and compare them with the
conventional MFCCs on Aurora 2 task.

3. Model based approach

3.1 Log-Add noise compensation
The Log-Add noise compensation [2] is a non-linear
transformation of mean vector in clean speech models. It is
carried out in the log-spectral domain. After estimation of
noise parameters u!; in the log-spectral filter bank j, the
mean !, of static MFCCs in each Gaussian mixture m
atstate i is transformed by the following formula,
[ = M + log(l + exp&z,’,j - /1},,,,»)) Q)
1<j<J, and J

where is the total number of

log-spectral filter banks. Superscript ! indicates that
parameters are in the log-spectral domain. The transformed
mean in the log-spectral domain is further transformed back
into the cepstral domain to substitute the original mean
vector in clean speech models.

This transformation assumes that the noise variance is
very small, and accordingly, only the mean of the acoustic
models are transformed. Other model based methods employ
similar functional formula with different complexities.

The noise parameter estimation is the key point to the
success of the method. If the noise is stationary in the testing
set, we can do mean transformation of clean speech models

once and then carry out speech recognition on the testing set.



4. Experiments
4.1 Performance of the feature extraction methods

4.1.1 Experimental setup

The - Aurora 2 task has provided baseline system
performances  to  calculate  relative  performance
improvements automatically, so that methods proposed from
different organizations can be compared. In this subsection,
the baseline system was trained on multi-condition training
set with 8840 utterances containing subway, babble, car and
exhibition hall noise in five different SNR conditions from
5dB to clean condition in 5dB step. Speech features are 13
MFECC coefficients with energy extracted from amplitude of
power spectrum, along with the delta and acceleration
coefficients. The MFCC coefficients are derived from 23
mel-spaced triangular filters. The baseline system thus uses a
39-dimentional feature vector per frame. Speech models are
eleven whole word HMMs fixed to 16 states 3 diagonal
Gaussian mixtures per state. Two silence model, one with 3
states and 3 mixtures each state modeling the utterances
beginning and end, and the other with one state and six
mixtures modeling the interword silence have been used.
Recognition system for. robust feature extraction was also
trained on the multi-condition training set. Testing was
carried out on three testing sets. Each testing set contains
noisy utterances with seven SNR conditions from -5 dB to
clean conditions. Testing set A contains noises in the
multi-condition training, whereas testing set B contains four
kinds of noises unseen in the testing set A. Testing set C is
more difficult since signals were distorted by MIRS channel
instead of G712 channel in the training set, testing set A and
B. Thus, it has channel effects besides the additive noise
effects on the speech features.
4.1.2 Performance of the sub-band based spectral

subtraction method

Figure 1 and Figure 2 each plot the word accuracies
versus SNR in three testing sets (denoted as Set A, Set B,
and Set C) of the spectral subtraction method with noise
spectrum estimated by long-term average and long-term
Fourier analysis, together with their overall word accuracies
(denoted as Overali) and that of the baseline (denoted as
Reference).

As a whole, the total relative performance improvement
from —5dB to clean condition are 19.35% and 19.32% for

the method with noise spectrum estimated by long-term
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Figure 2. Word accuracy by sub-band based spectral

average and long-term Fourier analysis, respectively.

4.1.3 Performance of the MFCCs derived from DPS

Table 1 shows the absolute values of word accuracy for
systems trained with MFCCs derived from Differential
Power Spectrum, together with the relative improvements in
each testing set for the average scores from 20dB to 0dB
along the bottom (in bold font), and similarly the relative
improvements in the overall scores for each SNR on the
right. The total relative improvement is shown in the bottom
right corner. It is observed that the proposed feature
extraction is not only robust to additive noise but also robust
to spectrum colorization, since the relative performance
improvement in testing set C is 36.82%, which is higher than
that in testing set A, 15.78%, and testing set B, 17.92%. As a
whole, a total relative performance improvement of 21.66%
can be obtained by the proposed method.

Figure 1~3 show the averaged recognition accuracies of
the described three feature extraction methods in the
evaluation. It can be seen that all of them can improve

system robustness over that trained with standard MFCCs.



A B C Percentage
Subwa Averag Averag Averag| Improvemen,
vy |Babble| Car |Exhib.| e Rest. | Street |Airport|Station] e Sub. |Street| e |Overall t
Clean | 99.08 | 98.76 | 99.11 | 99.26 | 99.05 | 99.08 | 98.76 | 99.11 | 99.26 { 99.05 | 99.05 | 98.85 | 98.95 | 99.03 34.01%
120 dB | 97.94 | 98.31 | 98.54 | 98.03 | 98.21 | 98.04 | 98.00 | 98.42 | 98.67 | 98.28 | 98.13 | 97.64 | 97.89 | 98.17 30.01%
15dB | 97.39 | 97.70 | 97.88 | 96.98 | 97.49 | 97.36 | 97.22 | 97.55 | 97.13 | 97.32 { 97.64 | 96.74 | 97.19 | 97.36 27.25%
10dB | 95.70 | 96.34 | 95.68 | 94.72 { 95.61 | 94.57 | 95.19 1 95.38 | 93.98 | 94.78 | 95.33 | 94.32 | 94.83 | 95.12 20.23%
5 dB 91.46 | 88.91 [ 90.46 | 87.44 | 89.57 | 85.42 | 88.60 | 89.11 | 86.02 | 87.29 | 90.42 | 88.00 | 89.21 | 88.58 20.31%
0 dB 75.13 | 64.93 | 62.48 | 68.74 | 67.82 | 62.67 | 68.20 | 71.25 | 61.83 | 65.99 | 72.09 | 67.20 | 69.65 | 67.45 19.61%
-5dB 34.05 | 27.45 | 20.46 | 29.10 | 27.77 | 27.48 | 28.93 | 31.35 | 21.85 | 27.40 | 32.42 | 27.93 | 30.18 | 28.10 4.70%
lAver. | 91.52 | 89.24 { 89.01 | 89.18 | 89.74 | 87.61 | 89.44 | 90.34 | 87.53 | 88.73 | 90.72 | 88.78 | 89.75 | 89.34
24.62%[10.69%{18.43%| 9.62% |15.78%|15.20%|18.55%(21.85%|16.78%]17.92%44.63%{28.49%(36.82%) 21.66%

Table 1. Word accuracy and relative performance improvement of the MFCCs derived from Differential Power Spectrum.

Baseline system and the recognition system were trained on multi-condition training set. Aver. denotes the averaged score in

each testing set. Overall denotes the overall score in each SNR condition for all testing sets.

A B C Percentage
Subwa Averag| Averag| Averag)| Improvemen|
vy |Babble| Car |Exhib.| e Rest. | Street [Airport|Station| e Sub. |Street| e Overall t
Clean | 99.26 | 99.27 | 99.27 [ 99.35 | 99.29 | 99.26 | 99.27 | 99.27 | 99.35 | 99.29 | 99.37 | 99.34 | 99.36 | 99.30 27.55%
20dB | 98.71 | 98.72 { 98.92 | 98.36 | 98.68 | 98.94 | 98.46 | 98.77 | 98.68 | 98.71 | 98.46 | 97.80 | 98.13 | 98.58 70.25%
15dB | 94.59 | 98.15 | 97.95 | 97.12 | 96.95 | 98.08 | 97.40 | 98.13 | 98.00 | 97.90 | 97.20 | 95.05 | 96.13 | 97.17 73.63%
10dB | 94.33 | 94.69 | 91.71 { 93.57 | 93.58 | 95.38 | 92.35 | 95.69 | 94.37 | 94.45 1 91.73 | 91.09 | 91.41 | 93.49 78.78%
5 dB 85.19 | 82.35 | 70.44 | 82.99 | 80.24 | 85.51 | 78.04 | 80.82 | 78.35 | 80.68 | 75.55 | 77.34 | 76.45 | 79.66 66.02%
0 dB 60.32 1 58.15 | 51.17 | 58.25 | 56.97 | 62.83 | 60.73 | 58.90 | 55.94 | 59.60 | 54.78 | 57.27 | 56.03 | 57.83 48.88%
-5dB 48.30 | 47.55 | 44.39 | 44.90 | 46.29 | 49.76 | 46.08 | 47.04 | 46.31 | 47.30 | 48.15 | 46.50 | 47.33 | 46.90 41.85%
lAver. | 86.63 | 86.41 | 82.04 | 86.06 | 85.28 | 88.15 | 85.40 | 86.46 | 85.07 | 86.27 | 83.54 | 83.71 | 83.63 | 85.35
56.18%|72.89%|54.41%|59.71%(61.93%|75.00%|62.05%|71.04%|66.35%68.97%(51.37%|51.92%|51.64%| 63.31%

Table 2. Word accuracy and relative performance improvement of the system compensated by the model-based method. Baseline

system and the recognition system were trained on clean training set. Aver. denotes the averaged score in each testing set. Overall

denotes the overall score in each SNR condition for all testing sets.

4.2 Performance of the model-based noise

compensation method

4.2.1

In many situations, a system has only clean data for model

Experimental setup

training. We thus carried out experiments here to show that
model-based methods can be effective to improve system
robustness to noisy environments in this kind of situations.
In this subsection, the baseline system provided by the
Aurora 2 task was trained on clean training set. Our
recognition system had HMMs with the same structure as
the baseline system and the models were trained on the same
clean training set, expect that the speech feature had some
differences from the baseline system. First, the MFCCs were
generated from the power of the Fourier transform in the
binning stage in the MFCC extraction procedure. Second,
the static coefficient was MFCC plus CO0. Last, the number

of filter-banks was 26 instead of 23 in the baseline system.

4.2.2

Noise

parameter

estimation

for the

model-based noise compensation method

The Log-Add noise compensation by Eq. (7) requires
noise parameter estimation. In the evaluation, it was
estimated by the method shown below.

We assume that, in each SNR, the noise is stationary. Thus,
a single Gaussian distribution can possibly represent its
statistics. Accordingly, the frames at the beginning and end
of utterances as a whole were used to estimate the statistics.
We thus made use of the transcript of clean speech utterance
output from the recognizer, and estimated the noise statistics
from noisy utterance given the transcript. In the experiments,
we only picked up one utterance in each SNR condition for
each noise situation in each testing set. The estimated mean
vectors of the MFCC plus CO in the segmented noise frames
were transformed to the log-spectral domain, and plugged

into Eq. (7) to transform the mean vectors of clean speech



models for each condition.

4.2.3 Performances of the noise

compensation method

Log-Add

Experiments were carried out on the same three testing
sets as the previous subsection. Performances of the system
compensated by the model-based method are shown in Table
2, which has the same structure as that in Table 1. It is
observed that the method is very effective in improving
system robustness to additive noise, since the relative
performance improvement over the provided baseline
system are 61.93% in testing set A and 68.97% in testing set
B. As a whole, the method yields a total relative
performance improvement of 63.31% on three testing sets. !
Fig. 4 apparently show that the method can effectively
improve system robustness to noise, compared to systems

without noise compensation.

5. Conclusions

Evaluations of a sub-band based spectral subtraction,
MFCCs derived from Differential Power Spectrum, and a
model-based method have been carried out on Aurora 2 task.
When multi-condition training set is available, we suggest
using the first two methods to improve system robustness to
noise. Specifically, MFCCs derived from Differential Power
Spectrum can be robust to additive noise and spectrum
colorization. When only clean training set is available, we
suggest a model-based method, where mean vectors of clean
speech models are transformed. Experiments carried out
have validated their effectiveness in improving system
robustness to noise.
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