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ABSTRACT

The varying background noises make it a problem to model the Inter-Word Pauses (IWPs) in SPINE2
project, easily leading to miss-location of IWPs and ill-estimation their HMMs. This paper presents
our approaches to develop explicit acoustic modeling of IWPs and carryout phone-duration-analysis to
correctly locate IWPs in the noisy training data. Through iterated optimizations, the final cross-word
CD tri-phone HMMs achieved by 9.2% less errors than the initial one trained through a flat-start building
procedure. Furthermore, we propose to treat IWP as one word and model it into the language model,
this approach successfully reduced the increased computation from acoustic modeling of IWPs, with no
significant decrease of the whole recognition performance.

Keywords SPINE project, noisy speech recognition, inter-word pause, duration analysis, prosodic
phrase boundary.
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1 Introduction

The second ”Speech in Noisy Environments”
(SPINE2) evaluation was conducted by the Naval
Research Laboratories (NRL) in October 2001.
The purpose of the evaluation was to provide con-
tinuing forum for assessing the state of the art
practice in speech recognition technology for noisy
military environments and for exchanging informa-
tion on innovative speech recognition technology
in the context of fully implemented systems that

perform realistic tasks. The approach ATR has.

taken to this task to develop acoustic models is
multi-session estimation including robust estima-
tion of baseline HMMs, gender dependent adapta-
tion and channel dependent adaptation, as illus-

trated in Figure 1.
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Figure 1: The multi-session adaptive procedure to
develop HMMs.
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This paper introduces our development of the
baseline acoustic models, especially the modeling
of inter-word pauses (IWPs), in order to improve
the system performance. The main reason for spe-
cific considerations about IWPs are that IWPs are
very frequent and inhomogeneous in the task, ap-
propriate modeling can not only enhance the ro-
bustness of HMMSs for themselves, but also im-
prove the accuracy of other phone HMMs. For a
description of ATR’s whole approach, readers are
suggested to look at [1].

The paper is arranged as follows: Section 2 de-
scribes the data and shows how frequent the IWPs
are in the training data; Section 3 introduces the
development of appropriate acoustic modeling of
IWPs for speech recognition; Section 4 introduces

. our another approach to model IWPs by means of
language modeling. Finally, section 5 gives con-
clusions.

2 SPINE2 Data

The SPINE2 data is organized in conversations be-
tween two speakers collaborating in a task of seek-
ing and shooting targets. Each speaker is seated
in a different sound chamber in which previous-
ly recorded background noise environment is re-
produced. Push-to-talk recordings were made of
signals from a communication line. The line was
activated at approximately the time at which an
utterance began, and was deactivated at the end of
the utterance. The recorded signal consisted of a

continuous background signal of noise produced by
the recording equipment, with intermittent record-
ings of the speech and reproduced noise communi-
cated through the channel [2]. There are total of 11
types of noisy environments including quiet, office,
aircraft carrier, street, car, helicopter, tank, fight-
er jet and others. Besides the noise background,
there are also sounds of whistles, rings, additional
tones, background speech etc. Additionally, the s-
peakers talked freely so that dropouts, repairs and
other kinds of spontaneous speech phenomena are
also frequent.

2.1 Training and Testing Data

Training data consists of 324 dialogs involving 20
speakers (10 males and 10 females). There are
about 28000 utterances with average length of 4
seconds. Total duration of speech data for train-
ing is about 15 hours. The signal-to-noise ratio (S-
NR) varies from 5dB to 20dB. All data have only

transcripts at word level, no phonetic segmenta-

tion information.

As test data, we used 8 channels of 4 conversa-
tions from the development data, between 2 male
and 2 female talkers who are different from the
training speakers, with the following four noise
environments: quiet, office, helo(helicopter) and
bradley (tank), 2 channels each. The total num-
ber of utterances is 361.

For the signal processing, although we have
used different feature representations in our sys-
tem [1], all the experiments here used the stan-
dard mel-scale cepstrum (MFCC). Speech data
were sampled at 16kHz and frame size of 20ms
and frame shift of 10 ms were used to compute M-
FCCs. 12 MFCCs plus log energy and their 1st
and 2nd order time derivatives form a 39 dimen-
sional vector.

2.2 Language Model

The language model (LM) training data and task
vocabulary were provided by CMU and were com-
mon for all participants in this SPINE2 evaluation.
Using the training data, we developed word bigram
language model for all the experiments here. The
training data also contains the transcripts of the
development data. During the experiments, the
language model scale was fixed to the same val-
ue (7) in order to clarify the effects from different
acoustic models.

2.3 Inter-word Pauses (IWPs)

It was noted that silent pause segments are very
frequent in the SPINE2 data. Figure 2 illustrates
the frequency histogram for the pauses and the
top-10 most frequent phones in the training data,
collected from the phonetic segmentation aligned
based on our final acoustic models AM09 (de-
scribed in next section).

e psl stands for a silence in the beginning of an
utterance.
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Histogram of segments in SPINE2 training data.
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Figure 2: Histogram for the pauses and top-10
most frequent phones in the SPINE2 training data.

e psl stands for an inter-word silent pause
whose duration is longer than 10ms but short-
er than 50ms.

e ps2 stands for an inter-word silent pause
whose duration is longer than 50ms.

o ps3 stands for a silence in the end of an utter-
ance.

It shows that not only pauses are very frequent
but also the long inter-word pauses (ps2) are even
the most frequent one in the data. The reason
for this is that most utterances in the task con-
sist of series of military commands. The inherent
prosody structures own frequent concatenations of
short command phrases. Hence, pauses, which are
usually associated with intonation phrase bound-
aries, are very frequent in this task. Due to the
push-to-talk data collection method and various
background noises, the IWPs probably have dif-
ferent statistics from those silent segments in two
utterance-ends. Therefore, appropriate modeling
for the pauses should be necessary in order to im-
prove the recognition performance.

3 Acoustic Modeling of IW-
Ps

Acoustic modeling of IWPs includes two aspect-
s in a speech recognizer based on context depen-
dent HMMs: appropriate HMM for IWPs them-
selves and appropriate modeling of their contextu-
al effects on their neighboring phones. The most
known method is the sp (short pause) tee HMM
given in HTK book [3], and the key points are:

e The sp tee HMM has only one skippable s-
tate which is tied to the center state of a 3-
state sil HMM which is for the silences at both
utterance-ends.

e Each word pronunciation is attached by sp
to model any possibly-appearing IWPs in
speech.

‘e The sp.is Context Free: it does not block
context-dependent effects in a cross-word con-
text modeling system.

This approach typically brings about good
performances for recognition of clean speech, and
it serves as our starting point. However, there
are two possible questions associated with this ap-
proach when applied to SPINE2 task.

1. TWPs in SPINE2 probably are different from
those silences at utterance-ends. The direct
tying of sp and sil may not be appropriate.

2. IWPs in SPINE2 may be long enough to block
the coarticulation effects between two neigh-
boring phones, suggesting that they should
not be Context Free.

In order to make clear these doubts and tes-
tify any new proposals, we carried out a series of
studies on the effects of different modeling of IW-
Ps. Finally, we reduced the word error rates by
absolute 9.2% from 53.21% to 44.0% of the cross-
word CD tri-phone HMMs using MFCC features
and the same LM scale. , :

Flat-start-HMM building: Since phonetic
segmentation was not available initially for the
training data, we need to develop HMMs from
flat-start, and do estimations, re-alignments and
optimizations by a number of iterations [3]. All
the experiments in this paper used this method to
develop HMMs.

3.1 sp HMM’s Estimation

The first investigation was made to the effects of
untying of sp and sil HMMs in 3 different ways.

e Method 1: sp was initialized from the ” si” H-
MM after flat-start mono-phone estimations,
and also tied to sil [3]. This is the convention-
al way. ' ‘ ‘

e Method 2: sp was initialized in the same way
as Method 1, but not tied to sil. If the as-
sumption that IWPs are statistically differ-
ent from the silences at utterance-ends, this
method should be better than Method 1.

o Method 3: sp was initialized in the same way
as other flat-start mono-phones, and not tied
to sil. This method offers the most freedom
for estimation of sp, assuming no relation be-
tween sp and sil.

Method 1 | Method 2 | Method 3
WER % 53.8 52.6 51.6

Table 1: Results in word-error-rates (WER) of d-
ifferent estimations of sp.

The HMMs for other phones in this experimen-
t was state-tied intra-word tri-phones, each with
left-to-right 3 state topology. 8460 tri-phones from
the lexicon share 2000 state, each with 13 Gaussian
mixtures. Table 1 gives the recognition results for
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the test data with respect to the 3 methods to es-
timate sp. The results showed that Method 1 got
the most errors, and Method 2 achieved 1.2% less,
and Method 3 achieved the least. Therefore, the
results provide evidence for our assumption that
IWPs might have different distributions from si-
lences at utterance-ends, and separate modeling
of IWPs and sil may lead to better performance.

3.2 Different Context Modeling

The second investigation was made to effects of

different context dependent (CD) modeling. We -

developed the following 4 sets of acoustic models:
e AMO1: intra-word CD tri-phone HMMs.
o AMO2: cross-word left CD di-phone HMM:s.
e AMO3: cross-word right CD di-phone HMMs.
o AMO04: cross-word CD tri-phone HMMs.

The four models estimated sp in the same way as
the previous Method 2, having the similar num-
ber of tied states and Gaussian mixtures. Figure
3 shows the recognition results and the average
training samples per allophone (ASP). Observa-
tions about the results suggest:

Word error rates and average samples per phone.
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Figure 3: The relations between word error rates
(WER) and average training samples per allo-
phone (ASP) of different context modeling.

1. Although cross-word CD tri-phone modeling
is assumed to be more powerful than intra-
word CD tri-phones, AM04 got more errors
than AMO1. But we cannot conclude cross-
word CD modeling is not effective in this task.
Because AMO02, the cross-word CD di-phone
achieved less errors than AMO1.

2. The probable reason may be attributed to the
factor of different ASPs of each modeling. Al-
though each tied state in the different models
may share similar number of training data,
the state-tying procedure is dependent on the
acoustic estimations of the allophone HMMs.
When the ASP is few, as only 8.3 per phone in
the case of AMO04, it is difficult to get robust
allophone HMMs. Hence not easy to achieve

- robust state tying of HMMs.

3. Furthermore, the coarticulation-block effect-
s by the frequent IWPs were not considered
either in AM04. For example, a phone se-
quence " A long-pause B’ may be accurate-
ly modeled in the way of ” A+{pause} pause
{pause}-B” from the view of coarticulation.
However, in the conventional way of Contez-
t Free modeling of IWPs such as sp, they are
modeled by ” A+{B} sp {A}-B”". Ignorance of
the correct modeling of IWPs lead to possible
ill-estimation of the allophone HMMs.

4. The lower performance of AM03 than AM02
can be attributed to the modeling of different
coarticulation effects. Left CD di-phone mod-
els the carryover effects, which are phonet-
ically more significant than the anticipation

" effects modeled by the right CD di-phones.
Comparison of the two models also showed
that ASP is not a dominant factor for devel-
oping robust HMMs.

3.3 Explicitly Modeling IWPs

Based on the analyses of the two preliminary in-
vestigations, it is obviously reasonable to adopt a
new symbol ps to explicitly model IWPs, and its
HMM was developed in the following way:

e The ps HMM has the same topology as the
sil, and was. initialized by the sil HMM after
flat-start mono-phone initialization.

o The psis Contexrt Dependent, appearing in the
context factor of CD modeling.

e A separate dictionary entry with ps suffix is
created for each real pronunciation in the lex-
icon.

o Initial training samples for ps took those sp
segments whose durations were longer than
50ms. Then iterated force-alignments of the
training data automatically found the pho-
netic segmentations in the later training pro-
dures.

Based on the procedure, we developed a new
set of acoustic model AMO5:

e AMO5: Cross-word CD di-phone HMMs with
a ps to explicitly model IWPs.

The recognition performance of AMO05 is giv-
en in Figure 4. When compared to AM02, AM05
reduced WER by 2.6% from 51.1% to 48.5%, show-
ing the effectiveness of the proposal.

3.4 Duration Analysis Based loca-
tion of IWPs

When we paid a look at the phonetic segmenta-
tions resulted from force-alignment by AMO05, we
found those IWPs with high noise level were fre-
quently miss-located by either ps or sp. Their s-
tatistics could not be learned by either ps or sp.
In order to locate these noisy IWPs, we developed
a duration analysis based approach.
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o Step 1: compute the duration mean y; and de-
viation ¢; of each phone P; from the phonetic
segmentations of the training data aligned by
AMO5.

e Step 2: If a word boundary phone P; was not
followed or preceded by an IWP label, and its
duration is extraordinarily long (> p; + 3 x
0;), an ps label would be inserted for a miss-
located IWP.

The philosophy under this approach is that a
phrase-final vowel is often lengthened and the du-
ration of a consonant is relatively consistent [5]. It
is reasonable to assume a pause following an ex-
traordinarily long phrase boundary vowel, and re-
gard an extraordinarily long consonant as includ-
ing a miss-located pause. With the new phonetic
segmentations, we trained another set of HMMs.

o AMO06: Cross-word CD di-phone HMMs with
ps, estimated from duration-based located I-
WPs.

Figure 4 showed that AMO6 further reduced
WER by 1.7% from 48.5% of AMO05 to 46.8%,
demonstrating the positive effect of the proposal.

Word Error Rates for Different AMs.

Word Error Rates %

AMO4 AMO2 AMO5 AMO6 AMO7 AMO8 AMO9 AM10

Figure 4: Recognition results of different acoustic
models.

3.5 A HMM for Noisy IWPs

We also tried a separate np HMM to intentionally
model noisy IWPs. The np HMM was developed
in the same way as ps. The initialization samples
for np took those ps segments in noisy channel-
s, denoted by provided channel information. The
acoustic model with np is AMO7.

e AMO7: Cross-word di-phone HMMs with ps
and np.

However, this approach led to by 2.1% more
errors than AM06. And the reason was analyzed
as: both ps and np are Context Dependent. The
resulting multiple CD di-phones of ps and np may
be biased to the channel background noises, unable
to robustly estimate an HMM for IWPs.

3.6 Merge Silent HMMs

By now, we have already 4 types of silent HMMs: a
sil for silences at utterance-ends, three HMMs, i.e.,

sp, ps, np, for IWPs. As shown in the previous ex-
periment, an increasing number of silence HMMs
had the possible problem of insufficient estimation
of the parameters. From the view of coarticula-
tion, long IWPs have the similar contextual effects
on their neighboring phones to those arouse by si-
lences at utterances-ends. Therefore, it should be
reasonable to merge the ps and np to sil in order to
get a robust estimate of all silences. Since we have
got more accurate phonetic segmentations of the
training data from the previously evolving HMMs
like AM06 or AM07, we may rely on the segmen-
tations of IWPs to estimate sil rather than on the
on-line alignment of training data. Another 3 sets
of acoustic models were developed.

o AMO8: Cross-word CD di-phone HMMs with
the sil for IWPs either. Phonetic segmenta-
tion was made based on AMO7.

AMO9: Cross-word CD tri-phone HMMs with
the sil for IWPs either. AMO07 based phonetic
segmentation was used.

AM10: Cross-word CD tri-phone HMMs with
the sil for IWPs either. Phonetic segmenta-
tions was from on-line alignment, rather than
the one segmented by AMO07. This is similar
to the method introduced in [4].

From Figure 4, we may see that:

1. AMO08 achieved by 1.7% less. errors than
AMO7, but still 0.4% more errors than AMO06.
It may be ascribed to the difference between
Contezt Independent modeling of IWPs by
sil and Contert Dependent modeling by ps.
The previous modeling owns substantially less
number of parameters.

2. The shortcoming of AM08 was overcomed in
AMO09 by adopting the tri-phone modeling
which substantially increased the number of
allophones. The accurate phonetic segmenta-
tion by AMO7 guaranteed a robust estimation
and tying of the allophone HMMs. This re-
sulted in the lowest error rates, by a further
2.7% when compared to AM06, and by 9.2%
when compared to the initial cross-word CD
tri-phone AMO04.

3. As a comparison experiment to AM09, AM10
got 5.2% more errors. This indicates the sig-
nificant effect of correct phonetic segmenta-
tions of IWPs on the development of cross-
word CD tri-phone HMMs.

4 Language Modeling of IW-
Ps

The previous acoustic modeling of IWPs need to
adopt optional pause suffices to each real pronunci-
ation in the lexicon. This means that the adoption
of one model ps would double the size of the orig-
inal lexicon, and adoption of two ps and np would
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make the new lexicon 3 times large as the origi-
nal one. As a result, decoding computation also
increased by several times.

One substitute way is to regard the IWP as
one word, and develop language model from speech
aligned transcripts with located IWPs. Then the
probabilities such as:

PI’Ob(IWPIWi_;[W,‘_z faay Wi—n+1)
Prob(Wi|Wi_y ..., IWP ..., Wi_ns1)

can be estimated to model any possible statisti-
cal relation between the normal words and IWP
word. Based on the new language model, not on-
ly the computation increased by modeling IWPs
can be reduced, but also the new language model
has the ability to model the underlying prosody
structure. As IWPs are likely to follow only those
words which can appear as phrase finals[6].

After aligning all the training data and devel-
opment data based on AMO07, we got new word
transcripts with IWPs, and used them to estimate
a new word bigram language model. The new lan-
guage model has a better perplexity than the orig-
inal one, as in Table 2.

Language Model | Perplexity
LM1 (normal) 16.3
LM2 (IWP) 15.6

Table 2: Perplexity of two language models.

Word Error Rates for Different LMs
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Word Emor Rates %

AMOS AMO7 AMOS-1

Figure 5: The effects from different LMs on recog-
nition results.

Based on the new language model LM2, we
carried out recognition experiments using acoustic
models AM06, AM07 and AM09. The results are
given in Figure 5, where AMO09-1 used the same
LM scale 7 as before, and AM09-2 used an opti-
mized LM scale 15, which is the best one for each
LM in most cases.

The results showed that LM2 introduced a lit-
tle more errors than LM1 in most cases. Although
LM2 got by 3.2% more errors than LM1 for AM09
when using the fixed LM scale 7, the gap was re-
duced to 0.8% after LM scale was optimized. From
these results, we suggest: ‘

1. It is reasonable to model IWPs by language
models, as evidenced by the better perplexi-

ty of LM2, and comparable recognition per-
formances of LM1 and LM2 with respect to
different acoustic models.

2. High-order n-gram LM should be experiment-
ed to draw a more general conclusion.

3. The advantage of reduced computation by
LM2 should be notified.

5 Conclusions

This paper discussed the problem of IWPs’ mod-
eling in SPINE2 task, which arouse from the d-
ifferent acoustics of IWPs from the silences at
utterance-ends, and introduced our approach to
exploit either acoustic modeling or language mod-
eling to deal with the problem. Based on iterat-
ed optimization of the phonetic segmentation of
IWPs, the final cross-word CD tri-phone HMMs
achieved by 9.2% less errors than the initial one
trained through a flat-start building procedure.
The language model approach successfully reduced
the increased computation from acoustic modeling
of IWPs, with no significant decrease of the whole
recognition performance.
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