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Usetulness of Phase in Speech Processing
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Abstract: It is a common belief in speech community that the short-time phase spectrum plays very little
(or, no) role in human perception tasks as well as in automatic speech recognition systems. In this paper, the
usefulness of phase information is explored in human speech perception as well as in automatic speech recognition.
Through human perception experiments, it is shown that the short-time phase spectrum (with widow size of 32
ms) contributes to speech intelligibility as much as the corresponding power spectrum. A representation based
on frequencies of the speech signal derived from its short-time phase is developed and is found to be as good as

cepstral representation (derived from power spectrum) for automatic speech recognition.
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Introduction We can decompose S(v,t) as follows:
Though speech is a non-stationary signal, it can be Swt) = |Sw t)lejw(u,t) (2)

assumed to be quasi-stationary and, therefore, can be

processed through a short-time Fourier analysis. The where |S(v,2)] is the short-time magnitude spectrum

, _ . .
short-time Fourier transform (STFT) of speech signal and ¢(v,2) = £5(»,?) is the short-time phase spectrum.

Square of magnitude spectrum is called the power spec-

s(t) is given by
trum (i.e.; P(v,t) = |S(v,?)|?). The signal s(t) is com-

[ee]
Svt) = / s(T)w(t — T)e—j27rw dr, (1) pletely characterized by its short-time power and phase
- spectra.
where w(t) is a window function of duration 7,,. In Though the phase spectrum carries half of the infor-

speech processing, the Hamming window function is typ-  mation about the speech signal (as seen from Eq. 2,

ically used and its width 7, is normally 20-40 ms. it has been totally discarded (or given very little im-
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portance) in most of the speech processing applications
(such as speech recognition [1, 2] and enhancement [3,
4]). It is perhaps due to our common understanding
derived through psychoacoustic experiments (done as
early as in the nineteenth century by Helmholtz [5])
that the human ear is almost insensitive to phase. Even
the recent human perception studies [6] have indicated
that the short-time phase spectrum (window duration of
about 30 ms) conveys no information about the intelligi-
bility of speech. In the current automatic speech recog-
nition systems [1, 2], the cepstral features are the most
commonly used features. These features are derived us-
ing only power spectrum (phase spectrum is totally ig-
nored). Similarly, in speech enhancement systems [3],
only power spectrum is enhanced; phase spectrum of
noisy speech is left untouched.

In this paper, the usefulness of phase information is
explored in human speech perception as well as in au-
tomatic speech recognition. Through human perception
experiments, it is shown that the short-time phase spec-
trum (with widow size of 32 ms) contributes to speech
intelligibility as much as the corresponding power spec-
trum. A representation based on frequencies of the
speech signal derived from its short-time phase is de-
veloped and is found to be as good as cepstral represen-

tation for automatic speech recognition.

Short-time phase spectrum
in human speech perception [7]

Here, we assess the importance of short-time phase
spectrum against the short-time magnitude spectrum
through human perception experiments. For this, we
record 16 commonly occurring consonants in Australian
English in aCa context spoken in a carrier sentence
“Hear aCa now”. For example, for consonant /d/, the
recorded utterance is “Hear ada now”. These 16 conso-
nants in the carrier sentence are recorded for 4 speak-
ers: 2 males and 2 females. Each of the 64 utterances
are processed through a STFT-based speech analysis-
modification-synthesis system to retain either only phase
information or only amplitude information.

In order to get, for example, an utterance with only
phase information, the signal is processed through the
STFT analysis using Eq. 1 and the short-time mag-
nitude spectrum is made unity in the modified STFT

S(y,t); ie.,

S(vt) = v, (3)

020

This modified STFT is then used to synthesize the sig-
nal 5(t) using the overlap-add method [8]. The syn-
thesized signal §(¢) contains all the information about
the short-time phase spectrum contained in the original
signal s(t), but will have no information about its short-
time magnitude spectrum. We call this procedure as the
STFT phase-only synthesis and the utterances synthe-
sized by this procedure as the phase-only utterances.
Similarly, for generating magnitude-only utterances, we
retain the short-time magnitude spectrum, but make
the short-time phase spectrum totally random; i.e., the

modified STFT is computed as follows:
Swt) = ISw,1))e?, (4)

where ¢ is a random variable uniformly distributed be-

tween 0 and 2.

In the STFT-based speech analysis-modification-synthesis

system using the overlap-add method, there are three
design issues that have to be addressed. First, what type
of window function w(¢) should be used for computing
STFT (Eq. 1)? Normally, a tapered window function
(such as Hanning, Hamming or Triangular) has been
used in earlier studies [6, 4]. Since these studies have
found short-time phase spectrum to be unimportant,
we decided to check a window function which is not
tapered. Therefore, in our paper, we investigate two
window functions: Hamming and Rectangular. Second,
what should be the duration T}, of the window function?
In our study, we investigate the importance of STFT
phase spectrum for two different durations: 1) T,, =
32 ms and 2) T, = 1024 ms. Third, how often should
we compute STFT; i.e., how often should we sample the
STFT across time axis? Since we have to synthesize the
signal from it, this should be done to avoid the aliasing
errors. Thus, it is decided by the window function w(t)
used in the analysis. For example, for Hamming win-
dow, the sampling period should be at most T, /4 [8].
To be on a safer side, we have used a sampling period
of T,,/8; i.e., we update our frame every T, /8. Though
the rectangular window can be used with larger sam-
pling period, we use the same value of sampling period
(i.e., Ty /8) to maintain the consistency.

In our human perception (listening) tests, we use 12
subjects; all are native Australian English speakers within
the age group of 20-35 years. The magnitude-only and
phase-only utterances are played in random order to
each subject through a headphone and the task of the

subject is to identify each utterance as one of the sixteen
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consonants. This way, we get consonant identification
(or, intelligibility) accuracy for each subject for different
conditions. We list in Table 1 our results averaged over
the 12 subjects. We can make the following observa-
tions from this table: For longer window durations (7,
= 1024 ms), short-time phase spectrum provides sig-
nificantly more information than the short-time mag-
For

shorter window durations (7, = 32 ms), intelligibil-

nitude spectrum for both the window functions.

ity of magnitude-only utterances is significantly better
than the phase-only utterances for Hamming window
function, but these are comparable for the rectangu-
lar window function. Thus, if we use the rectangu-
lar window function in the STFT analysis-modification-
synthesis system, the short-time phase spectrum car-
ries as much information about the speech signal as the
short-time magnitude spectrum, even for shorter win-
dow durations (7, = 32 ms) which are typically used in

speech processing applications.

% 1: Consonant intelligibility (or, identification accu-
racy) of magnitude-only and phase only utterances for
Hamming and rectangular windows with window dura-
tions of 32 ms and 1024 ms.

Window Intelligibility (in %) for
type magnitude-only phase-only
32ms | 1024 ms | 32 ms | 1024 ms
Hamming 84.2 14.1 59.8 88.0
Rectangular | 78.1 13.2 80.0 89.3

Short-time phase spectrum
in automatic speech recognition
[9]

As mentioned earlier, the cepstral features used in
current speech recognition systems are obtained from
the power spectrum P(v,t). They do not use any infor-
mation from the phase spectrum ' (v,%). In this paper,
we propose to use frequency-related features derived
from the short-time phase spectrum ¢ (v,t) for speech
recognition. For this, a short-time instantaneous fre-
quency (IF) spectrum is computed as follows [10]:
1 dy(v,t)

Fv,1) 2 dt

(5)

We use in the present paper this short-time IF spectrum

for deriving the features for speech recognition. Note

030

that this IF spectrum has been used in the past for
extracting fundamental frequency [10, 11] and formants
[12, 13].

Instead of using the STFT analysis, we use a pro-
cedure which employs a bank of bandpass filters for
frequency decomposition. We describe below our pro-
cedure 1) for computing the short-time power and IF
spectra, and 2) for extracting the frequency-related fea-
tures from the short-time IF spectrum.

Consider that we are interested in telephone band-
width speech signal from 200 Hz to 3400 Hz. We sample
the frequency range uniformly on mel scale at N = 200
points. Using these frequency values as their center fre-
quencies, design N = 200 bandpass filters with band-
widths equal to their respective critical bandwidths [1].
Our analysis procedure can be described in terms of the

following steps:

e Step 1: Apply the speech signal s(t) to each of
the N bandpass filters. Let the output of the ¢-th
bandpass filter be s(v;,t), where v; is the center
frequency of the i-th bandpass filter. For illustra-
tion, we consider a speech signal corresponding to
vowel /i/ and apply it to the i-th bandpass fil-
ter (i = 139) with center frequency v; = 1880 Hz
and bandwidth = 280 Hz, and its filtered output
s(vi,t) is shown in Fig. 1(a).
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B 1: (a) Filtered signal s(v;,t) from the i-th bandpass
filter with center frequency v; = 1880 Hz and bandwidth
= 280 Hz, (b) Hilbert transform 5(z;,t), (c) IA function
a(vi,t), and (d) IF function f(v;,1).

e Step 2: For each filtered signal s(v;,t), compute

the Hilbert transform $(v;,¢). This is shown in
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Fig. 1(b).
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and decompose it as follows: -
©
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sq(viyt) = a(Vi,t)eJ¢(””t), (7) 20
515
(8]
where a(v;,t) = |sq(vi,t)| is the instantaneous am- 10
. . 5
plitude (IA) of the filtered signal s(v;,t) , and
00 500 1000 1500 2000

é(vi,t) = /sq(vi,t) the instantaneous phase. The
instantaneous frequency (IF) f(v;,t) is computed

from the instantaneous phase ¢(v;,t) as follows

[14]:

IF (mel)

B 2: (a) Short-time power spectrum P(v;,t), (b) Short-
time IF spectrum F(v;,t), and (c) Short-time IF his-
togram H (F,t).

1 d I/Z',‘t
Floit) = o= 20T (8)
2m t follows:
The TA and IF functions for the i-th filter (i = Flug,t) = f_oooo fws, 7)0(vi, ")w(t — T)dr (10)

139) are shown in Fig. 1(c) and 1(d), respectively’.

Step 4: For each filtered signal s(v;,t), compute

a short-time power estimate from the TA function

[, 0w, nw(t —r)dr
where the threshold function 6(v;,t) is defined as

follows:

as follows: O(vi,t) = 0, ifa(y,t) <O(y), (11)
. v 1, otherwise.
2 la(vi, m)Pw(t — T)dr
P(ui,t) = CS ; (9) The value of threshold ©(v;) can be selected through

J

where w(t) is a window function, similar to the one

- w(t — 7)dr

used in STFT. P(v;,t) as a function of v; provides
an estimate of the short-time power spectrum for
the frame centered at time ¢. This power spectrum

is shown in Fig. 2(a).

Step 5: It can be observed from Fig. 1 that the fil-
tered signal s(v;,t) is band-limited (between 1740
and 2020 Hz), but its IF f(v;,t) is not confined
within the band boundaries. This is quite counter-
intuitive and a number of methods are reported
in the literature to overcome this problem [13]. In
the present paper, we handle this problem by ob-
serving the fact that the IF misbehaves only when
the corresponding IA is low. Therefore, we use
only those values of IF for computing the short-
time IF estimate for which the corresponding TA
is above certain threshold. For each filtered sig-

nal s(v;,t), we define a short-time IF estimate as

experimentation. In our experiments, we have set
it to the average value of a(v;,t) over the frame du-
ration. F(v;,t) as a function of v; provides an esti-
mate of the short-time IF spectrum for the frame
centered at time £. This IF spectrum is shown in
Fig. 2(b).

It can be observed from Fig. 2(b) that the short-
time IF spectrum captures the formant structure
in the form of flat (or, low slope) portions. That
is, it shows flat regions where-ever there is formant
activity in the power spectrum. Thus, it contains
useful information for speech recognition. How-
ever, it 1s not clear how to use this spectrum to
extract features for speech recognition. One pos-
sible method is to take the first derivative of this
spectrum with respect to frequency v; and com-
pute the cepstral coefficients from the resulting
derivative through DCT. However, we have exper-

imentally found this method to be unsatisfactory

1We have used here the analytic signal decomposition method for SpeeCh recognition.

for computing the instantaneous frequency (IF) of a signal. How- We use another method to derive recognition fea-
ever, there are other methods, such as the Teager energy method

[15], reported in the literature for computing the IF. tures from the short-time IF spectrum F(l/i, t). In

0 4d
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this method, we completely ignore the informa-
tion about the center frequencies v; of the band-
pass filters and pool all the short-time IF values
We use this

pool of IF values to generate a histogram. We

for the frame centered at time t.

call it the short-time IF histogram and denote it
by H(F,t). This histogram is shown in Fig. 2(c).
Note that this short-time IF histogram has got
formant peaks similar to that in the short-time
power spectrum shown in Fig. 2(a). We have car-
ried out this type of frequency analysis for dif-
ferent vowel and consonant sounds of speech and
observed that the short-time IF histogram H (Ft)
contains meaningful formant-like information about

the speech signal.

e Step 6: We have seen that the short-time IF his-

togram H (F,t) contains useful information for speech

recognition. In order to use it for speech recogni-
tion, we parameterize it into cepstral coefficients
through DCT. We call these cepstral coefficients
the frequency-related features and use them for

speech recognition.

In order to test the effectiveness of the short-time
IF spectrum, we use a very simple multi-speaker vowel
recognition system. The data base consists of 10 Hindi
vowels spoken 30 times in /b/-V-/b/ context by three
speakers (2 males and one female). Sampling rate of
speech signal is 8 kHz. A 30 ms segment is excised
from the central steady-state vowel portion of each ut-
terance. We use 15 repetitions from each speaker for
training the recognizer and the remaining 15 for test-
ing. Thus, we have 450 vowel segments as training data
and another 450 as test data. For the recognition exper-
iments reported in this paper, we use only 10 bandpass
filters uniformly spaced on mel frequency scale over the
range of 200 Hz to 3400 Hz. ;From each vowel segment,
we extract 10 short-time IFs (using Eq. 10). These 10
IFs (called as mel frequency instantaneous frequencies
(MFIFs)) form a feature vector for each vowel segment.
For vowel recognition, we use a Bayesian classifier with
the maximum posterior probability decision rule. We
train our recognition system with clean speech, but test
1t on clean speech as well as on speech distorted by ad-
ditive white noise with signal-to-noise ratio (SNR) of
20 dB. Recognition results are listed in Table 2. To pro-

vide comparison with features used in current speech

g so

recognition systems, we also provide in this table re-
sults obtained by using 10 linear prediction cepstral co-
efficients (LPCCs) and 10 mel-frequency cepstral coeffi-
cients (MFCCs). It can be seen from this table that the
MFIF features provide recognition results comparable
to the LPCC and MFCC features.

# 2. Speech recognition performance of the LPCC,
MFCC and MFIF features in presence of additive noise

distortion.

SNR | Recognition accuracy (in %)
(dB) [ LPCC | MFCC | MFIF
00 80.9 80.4 78.7
20 62.4 68.4 69.5
Conclusions

In this paper, the usefulness of phase information is
explored in human speech perception as well as in au-
tomatic speech recognition. Through human perception
experiments, it is shown that the short-time phase spec-
trum (with widow size of 32 ms) contributes to speech
intelligibility as much as the corresponding power spec-
trum. A representation based on frequencies of the
speech signal derived from its short-time phase is de-
veloped and is found to be as good as cepstral repre-
sentation (derived from power spectrum) for automatic

speech recognition.
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