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Abstract The word rejection problem in speech recognition is formulated in a framework of word-spotting, where a
spotted word is verified through a binary, acceptance/rejection decision. A generalized word posterior probability (GWPP),
used as the sole confidence measure, is computed in a word graph, via the forward-backward algorithm or in an N-best list,
using string likelihoods. The GWPP is further enhanced by incorporating all spotted words with the same word ID and
overlapped time registrations. When tested on the Japanese BTEC speech database, the confidence error rate is significantly
reduced, from 23.76% to 17.78% and 20.18% to 15.57% for the two test data sets, respectively.
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In this study we reformulate the problem of accepting
1. Introduction or rejecting each word recognized by a continuous speech
recognizer in a word-spotting framework. In addition to
the focused, or the spotted word, all other word
hypotheses in the word graph or N-best list are treated as
fillers and the generalized word posterior probability of
the spotted word is computed. By using this word/filler
dichotomy, there is no need to construct a consensus
network like the "sausage" [5], lattice chunking [6] or

The current state-of-the-art speech recognition has
found a wide range of potential commercial applications
(e.g., spoken dialog systems, speech translation systems)
and for some of them encouraging successes have been
obtained. However, the recognition technology is still not
robust to changes such as environments, speakers and

background noise conditions. The demand for a
dynamic programming based string alignment [7]. Related

confidence measure of the recognition output to facilitate
issues are discussed and investigated, including:

an acceptance/rejection mechanism always exists and

increases further with more challenging applications. (1)  areduced string hypothesis search space to test the

A desirable confidence measure should be both word-spotting framework in a word graph or an

computationally feasible and statistically meaningful. The N-best list;
word posterior probability has been advocated and tested (2) relaxation of the time constraints for finding a
in a word-graph or N-best list [1,2,3,4]. “consensus”, by grouping the word posterior
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probabilities of all reappearances of the
hypothesized word;

(3) appropriate weighting of the acoustic and language

probabilities to alleviate the

incompatibilities between these two models due to

some convenient but not so cogent assumptions.

model

The rest of the paper is organized as follows. In
Section 2 the problem of accepting or rejecting a word in
a recognized string is reformulated in a word-spotting
framework. In Section 3 and 4, the string and word
posterior probabilities are reviewed for their relevance in
the HMM-based continuous speech recognition and their
appropriateness for measuring confidence are discussed.
Modifications needed to make the word posterior
probability more efficient to compute and more effective
as a good confidence measure are also proposed. In
Section 5 and 6, experimental setups and their results are
given. Discussions on the experimental results are given
in Section 7. In Section 8, a conclusion of this paper is
given.

2. Word-spotting based hypothesis testing
approach
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Figure 1. Reduced search space in the form of a word graph
and an N-best list with spotted word "w" and fillers "*".

Conceptually it is insightful to view the
acceptance/rejection of a recognized word in the
framework of word-spotting. Two diagrams, one in a word
graph and the other in an N-best list, are shown in Figure
1. Different from the conventional word graph or N-best
list where explicit word arc labels are marked, the new
diagrams only show the spotted word, w, and all the
other words are labeled as fillers by the symbol “*”.In the
next section, we will review the HMM-based continuous
speech using the posterior string
probability first and the posterior string probability will
then be used in computing the word posterior probability
of each spotted-word individually.

recognition by

3. String posterior probability

In an HMM-based speech recognizer, the optimal word

-

«M * . .
sequence, w' =W;’Wz:"'WM , for a given acoustic
observation sequence, x’ =x ,x,,-X is found b

1 15X X s

searching over all possible word sequences in the
maximum posterior probability (MAP) sense as

M
w'l =argmax p(w," }x,T )
u

M

( T M) ( M

xTw w

=argmaxp 1 U TP 1
Mow P\

= argmax p(xlr Jw¥ ) p(w]M ) (6]

Mo
where p(x‘r fw ), the acoustic model probability; p(w,“ ),
the language model probability; and p(x{), the acoustic
observation probability.

It should be noted that string length, M , is also
variable in the search. In the last equation for finding the
optimal string the term p(x{) can be dropped because it
is a constant bias term independent of the choice of the
word sequences, w]". Without using p(xlr) the optimal
word sequence, W1M , can still be found by comparing all
possible word sequences in terms of their string
likelihood calculated by the acoustic and language
components, p(x‘T{wlM)and p(w‘M ), respectively. But for
many practical ASR applications, finding the optimal
sequence of words is just the first step to make the
recognizer useful and the normalization factor p(xl’) is
still crucial for assessing the reliability of each
recognizer word via the posterior probability.

The string posterior probability, p(w]“gx{), which
measures the likelihood of a recognized string, WIM ,
given the acoustic observations x|, is hypothesized with
its corresponding time segmentations by the Viterbi
search, i.e., .

[W;s”]:‘ = Wx;sntl]“'[wu;su"ul
where s and t are the starting and ending time frames
of the word w, where s, =1, t, =T and t +l=s,,
for 1<m<M-1. By

observations,

assuming that the acoustic

xi , are dependent solely on the

corresponding word, w,_, we can rewrite Eqn.(1) as

. M .
s ) )

1oz 1w,) plw, 1w
o plxy) @

where the string posterior probability is decomposed into
a product of all the acoustic and language model

M
M=,
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probabilities of the corresponding word components at the
corresponding segmentation points s and ¢ . The

recursive dependency between the current word and
preceding words is addressed in the language model
(N-gram).

Due to mismatches between training and testing
environments, speakers, noises, etc., the “optimal” word
sequence may have many potential word errors. A
confidence mathematically tractable and
statistically appealing, should be adopted to check the
reliability or how trustful the whole recognized string or
the individual word content of the string is. We shall
advocate that the posterior probability, both at the string
and word levels, is an ideal choice for our purposes.

measure,

4. Word posterior probability

4.1. Basic formulation

The string posterior probability, p(w;" }x{) , is a
natural choice for assessing the reliability of the whole
recognized string. For an ideal, high performance ASR,
accepting or rejecting a string is probably adequate and
no checking of the reliability of each word is needed.
However, for many practical applications using the
current ASR technology, depending upon the vocabulary
sizes, task perplexities, operating environments, more
than often a string is recognized with some defect, or
misrecognized word content. The string posterior
probability will reject the whole recognized string
frequently, due to the low operating string recognition
rate. These defective strings, if not of too poor a quality,
should be checked not in terms of their overall string but
the individual word reliability.

A confidence measure, appropriate for measuring the
word reliability is then the word posterior probability,
p([w,s,t]}x{), which is defined by summing all the
posterior probabilities of strings consisting of the specific
word, [w;s,t] at given starting and ending time frames s

and ¢:
TTple tw,) pls, iw)
s, t]t Y m=1 3
P(st t]»xx ) MJWZ;J:.:}F p(x,T 3
3n,lsnsM
[waisita Hwss ]

4.2. Three practical issues

Several practical issues still need to be investigated
before the word posterior probability can be used as a
practical and functional confidence measure. The issues
are presented in the following subsections and the
resultant word posterior probability (WPP) we shall refer
to as a generalized WPP (GWPP).

4.2.1. Number of hypotheses to be considered in
computing the word posterior probability

The search space of all possible word strings in a large
vocabulary continuous speech recognizer (LVCSR) is in
general very large while each string's posterior
probability is quite different, assessed by the
corresponding acoustic and language model evidence. As
a result, comparing with the top strings, most of the
strings have relatively low likelihoods and a much more
reduced search space is both desirable and reasonable for
computing the word posterior probabilities. In the Viterbi
search, a beam is usually imposed to prune out unlikely
partial hypotheses and a word graph [1] or an N-best
string list [2,3] can be generated by keeping a subset of
string hypotheses which are much more likely than other
strings in the unpruned, original search space. We will be
using such a subset, in computing the word posterior
probability in later experiments. Obviously it is an
approximation of the true word posterior probability by
considering only a much smaller reduced set of strings,
but a practical and reasonable one.

When only a subset of strings is used, the acoustic
probability, p(xlT), in the denominator of Eqn. (3) is then

computed by summing up all the string posterior
probabilities in the chosen word graph or the N-best list.

4.2.2. The time of the word

hypothesized

registration

The time registration of the word, denoted by [w;s,r],

is hypothesized from the recognized string in the Viterbi
algorithm based recognition process. However, it may not
be the ground truth of the true beginning and ending time
frames of the word, only as a byproduct of the optimal (in
the Viterbi sense) word sequence search. Actually, if the
forward algorithm, which is in more agreement with the
Baum-Welch or the forward-backward HMM model
training, is used for continuous ASR and the starting and
ending frames of a word hypothesis is by definition “soft”,
i.e., not fixed. The time registrations of other strings in
the reduced search space like a word graph or N-best list
may deviate from the given ones. Since the goal of speech
recognition is to recognize the word content of an
utterance, rather than the exact timing information of
each individual word, we shall relax naturally the exact
timing constraints imposed by s and ¢ to a softer time
interval intersecting constraint. That is, as long as the
same word appears in a string with a time interval
intersecting (overlapping) with the time interval [_”], we
will include this string in computing the word posterior
probability. However, if a word with the same identity but
does not intersect with the spotted word, that string where
the word resides will not be included in computing the
GWPP. An example is given in Figure 2.
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Figure 2. Illustration of the time registration relaxation. The
word "w" in the top hypothesis is being spotted. Other strings
with "w" appear with intersecting time interval (the second and
third string) will be included. String with word "w" but does not
intersect (the last string) is excluded.

Eqn.(3) is now

p([w;s,t]:x,’)=

@
M,[wz;::,tlf p( T)

3n,1<n<M
[ssb bk
4.2.3. The weighting of acoustic and language
model likelihood

It is well known that in the popular HMM based
continuous ASR, some incompatibilities exist between the
acoustic model and the language model and some
convenient but not quite accurate assumption has been
made. They are:

(1) the statistical independence assumption of the
neighboring acoustic observations in computing
acoustic likelihoods;

(2) the dynamic range difference
probability density function (pdf) used in the
continuous Gaussian mixture based acoustic model
and the probabilities (i.e., between 0 and 1) used in
the N-gram language model;

(3) the language model likelihood is computed once at
every hypothesized word boundary while acoustic
model likelihood is computed at every frame
interval;

(4) in our computation of WPP, a reduced search space
i.e., word graph or N-best list, is used.

between the

To accommodate these modeling discrepancies in
practical implementations and to prevent the word
posterior probability from being dominated by just a few
top strings with high likelihoods, we modified Eqn.(4) to

a generalized word posterior probability (GWPP) as

M

([ ) [T sz 1w,) P2 (o, 1)

pllw;s,t]ix] )= m=l )
bk )

3n,tl<asM

w=w,

[t lsntnled

Obviously, the denominator term, p(x]T) , when

summed over all string hypotheses in the reduced search
space of a word graph or an N-best list, need to be scaled
by a and B accordingly to make sure the normalization is
appropriate.

5. Experimental setup

In this study, the word-spotting framework for word
acceptance/rejection has been tested using the Japanese
Basic Travel Expression Corpus (BTEC) [8]. Two testing
sets were used, namely setO1 and set02 with 510 and 508
utterances, respectively. Each data set contains different
utterances recorded from 10 different speakers who are
different from one set to the other. The recognition
systems used in our experiments is the ATRIUMS Version
2.2 from ATR [9]. Specifically, for our investigation, the
LVCSR is configured to generate 100-best hypotheses
recognition output together with the word graph for every
utterance and the search is constrained with a narrow
beam width to investigate its potential implications in
running real-time demonstrations.

5.1. Performance measures

The purpose of a word acceptance/rejection decision
process is to identify potentially erroneous words in
recognition output. These potentially erroneous words are
verified and a rejection or an acceptance decision is then
made on each individual word. In general, there are two
kinds of decision errors, false rejection (FR) when a
correctly recognized word is rejected and false acceptance
(FA) when a misrecognized word is accepted.

Confidence error rate (CER) [7] can be used as a
performance measure for word acceptance/rejection
decision. CER is defined as the ratio of all errors (FA +
FR) to the total number of recognized words.

' _ #of falseacceptances + # of false rejections
total # of word in the recognition output

(6)

It should be noted that deleted words cannot not be
recovered via a word acceptance/rejection decision and
therefore they are not included in the evaluation measure.
In the acceptance/rejection experiments, there are also
two relevant performance measures, error recall and
rejection precision. Among them, error recall measures
the performance of correctly identifying errors by the
ratio between the correctly identified errors and the total
number of errors given as

_ #of falseacceptances + # of falserejections
total # of word in the recognition output

O]

and rejection precision measures the accuracy of correct
rejections by the ratio between the correctly identified
errors and the total number of rejections given as
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# of correct rejections
total # of rejected words

®

Rejection precision =

6. Results and Analyses

If we accept all recognition output from the LVCSR
without any rejection, all decision errors are false
acceptance of incorrect words, including insertions or
substitutions. This is used as the baseline CER
performance in our experiments.

A simple and intuitively appealing approach to compute
the generalized word posterior probability is by counting
the number of hypotheses where the specific word appears,
denoted as the reappearance of a word. The ratio between
this count and the total number of hypotheses returned by
the LVCSR can give a quantized (either 0 or 1 for every
string), rough estimate of the generalized word posterior
probability. This word reappearance rate approach is
equivalent to setting both a and B in Eqn.(5) to zero.

6.1. N-best list

Figure 3 shows the total decision errors at different
combinations of o and B in a contour plot. The total
errors (false acceptance + false rejection) are shown with
a gray level of intensity, i.e., the larger the error counts,
the lighter the intensity. We first made a wider range,
coarse scale search to get a global view of the general
behavior of decision errors with respect to these weights.
A finer grid search around the “near optimal” region
located is then performed. The final operating points are
determined in the finer grid search and the optimal pair of
a and B yielding the lowest total errors are obtained.

set01 set02
540 440
520
500 420
480 o 4400
460
440 380
420

02 46 8101214 002 46 8101214

(a) set01 (coarse scale) (b) setO2 (coarse scale)

i
0 02 04 N6 08
B

(c) setO1 (fine scale) (d) set02 (fine scale)
Figure 3. Contour plots of total errors at different acoustic ()
and language model () weights when using GWPP derived from
N-best list (N<=100). Along the vertical axis of o and the
horizontal axis of B, the total errors are intensity-coded, i.e.,
the darker the gray level, the lower the total errors. The
corresponding scale for each of the contour plots is given as a
vertical bar to the right. (a) and (b) are wider range contour
plots on a coarser scale. (c) and (d) are obtained at a finer grid
around the optimal regions.

In Table 1, the optimal performance located from the
contour plots in Figure 3 is shown together with the
baseline. As mentioned before, when a and B are both set
to zero, it is actually counting the number of hypotheses
with the reappearance of the spotted word in the word
graph or the N-best list. We also made use of set0l as the
development set to obtain the optimal values of a,  and
the decision threshold, and then applied to set02 for
testing. The same process was also applied to set02 and
tested on setO1. We obtained CER at 17.90% and 16.15%
for set01 and set02, respectively. These correspond to
relative improvements of 24.6% and 19.9% in CER,
respectively.

N-best list set01 set02
baseline 23.76 20.18
a=0, B=0 21.13 17.67

(22.68, 66.15) | (29.93, 63.08)
«=0.09, B=0.4 17.06* 16.15
(set01 optimal) | (49.29, 70.05) | (39.47, 66.92)
a=0.01, p=0.2 17.90 15.48*
(set02 optimal) | (43.75, 69.60) | (39.47,70.92)

Table 1. Performance of word acceptance / rejection decision
based on GWPP derived from N-best list. The performance is
measured in CER (%). The error recall and rejection precision
rates (%) are included in the parentheses, respectively. Values
with “*” are the optimal performance in a closed test.

6.2. Word graph

Figure 4 shows the contour plots of total errors at
different combinations of o and § when the GWPPs are
derived from word graphs.

set01 set02

8 l 2 4
B8 ;
(a) setOl (coarse scale)

02 4 6 8101214

(b) set02 (coarse scale)

0 02 04 "B 08

(c) setO1 (fine scale) (d) set02 (fine scale)

Figure 4. Contour plots of total errors at different acoustic (o)
and language model (B) weights when using GWPP derived from
word graphs. Along the vertical axis of o and the horizontal
axis of §, the total errors are intensity-coded, i.e., the darker the
color, the lower the total errors. The corresponding scale for
cach of the contour plots is given as a vertical bar to the right.
(a) and (b) are wider range contour plots on a coarser scale. (c)
and (d) are obtained at a finer grid around the optimal regions.
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Table 2 shows the optimal performance located from
the contour plots from Figure 4 where word graphs are
used. These results show that a CER of 17.78% and
15.57% can be obtained from set01 and set02,
respectively. These correspond to relative improvements
of 25.1% and 22.8% in CER, respectively.

Word graph Set01 set02
Baseline 23.76 20.18
a=0, =0 21.34 18.12

(19.64, 67.48) | (21.95, 65.13)

o=0.04, $=0.3 17.14* 15.57

(set01 optimal) | (45.00, 72.41) | (38.80, 70.85)

o=0.05, $=0.2 17.78 15.48*

(46.96, 68.31) | (40.80, 69.96)

(set02 optimal)

Table 2. Performance of word acceptance / rejection decision
based on GWPP derived from N-best list. The performance is
measured in CER ¢%). The error recall and rejection precision
rates (%) are included in the parentheses, respectively. Values
with “*”are the optimal performance in a closed test.

7. Discussions

In these experiments, the generalized word posterior
probability (GWPP) is used as the confidence measure
while its acoustic model weight and language model
weight are optimized by minimizing the confidence error
rate (CER), or the total decision errors (sum of false
acceptances and false rejections). Also, on average an
error recall of 42% and rejection precision of 69% are
achieved.

Our experimental results also show that the optimal
operating region is closer to the origin than the original
weights used in the decoding (recognition) process.
Assigning zero to both o and B is equivalent to counting,
while larger values emphasizing top-ranking hypotheses
in computing the GWPP. In the extreme case, when o and
B are set to o, only the best hypothesis is considered. By
optimizing the values of a and f, an optimal weighted
combination of hypotheses is used in computing GWPP.

It is also observed that there is a “preferred ratio”
between a and B, which can be observed from Figure 3
and Figure 4. Along the slope, a shaded area of “preferred
ratio”, we can locate the sub-optimal combinations of o
and B for any fixed value of o (or B). One may search for
the truly optimal operating point by identifying the
“preferred ratio” line and then search for the globally
optimal point along this identified line. This is more
full-grid
combinations of o and §.

efficient than a search among different

When the weights (a and B) are closed to zero, there is
larger variations of performance. For GWPP derived from
N-best list, the total errors tend to settle at a steady value.
For GWPP in a word graph, the total errors increase

significantly towards B=0. This is because the maximum

number of hypotheses in an N-best list is more restricted,
i.e., clamped to N, than that of a word graph. As
mentioned above, use of small weights will “wash out”
the dominance of top-ranking hypotheses. In an N-best
list, at most N hypotheses will have evenly distributed
contributions to GWPP computation. However, in a word
graph, more lower-ranking hypotheses with bad acoustic
scores will contribute to the GWPP computation. As a
result, the total errors continue to increase.
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