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Verifying LVCSR Output at Different Levels with Generalized Posterior Probability
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Abstract Generalized posterior probability (GPP), a statistical confidence measure, is used for verification of large
" vocabulary continuous speech recognition (LVCSR) output at subword, word and utterance levels. GPP is obtained by
combining exponentially and optimally weighted products of acoustic and language model scores for reappeared units in the
reduced search space (e.g., word graph). Experimental results have demonstrated the effectiveness of GPP for verifying
LVCSR output at all three levels.
Keyword confidence measure, posterior probability, large vocabulary continuous speech recognition

1. Introduction systems. Recognized words with high reliabilities

The current state-of-the-art speech recognition are accepted without confirmation to reduce the

technology is not robust to changes such as noise, number of dialogue turns [1]. In an automatic speech

channel mismatch, speaker variability, etc. Selective translation system, we can use the confidence

acceptance or rejection by verification of the measur‘es to weight corresponding reliabilities of
recognized words to facilitate  appropriate
translations [2].

There have been various approaches proposed

recognition output of a large vocabulary continuous
speech recognition (LVCSR) system is then

necessary. By assessing the confidence of speech

recognition results properly, appropriate actions can for measuring confidence of speech recognition

then be taken to improve the overall performance of output. They can be roughly classified into three

categories: i) feature based; ii) explicit model based;
and iii) posterior probability based. Feature based

spoken dialogue systems as well as automatic speech

translation systems.

Confidence measures are useful for improving approaches [3] try to assess the confidence according

performance of spoken language systems both to selected features (e.g., word duration,

subjectively and objectively. For example, only part-of-speech, ~acoustic and  language model

recognized words with low reliabilities need to be back-off, word graph density, etc.) using some

confirmed by a machine prompt in spoken dialogue trained classifiers. Explicit model based approaches

employ a candidate class model with competing

! The author is now with Microsoft Research Asia.

—2569—



models [4] (e.g., an anti-model or a filler model) and
a likelihood ratio test is applied. The posterior
probability based approach tries to estimate the
posterior probabilities of a recognized entity (e.g.,
word) given all the acoustic observations [5,6].

Given a spoken utterance, an LVCSR returns a
sequence of words as recognition output. In our
experiments, these words are treated as the word
level recognition units. For utterance level units, we
treated the whole recognized sequence of words as a
single unit. Furthermore, words are made up from
subwords, e.g. syllables (or characters in Chinese),
and they were used as subword units. These subword
units are derived from the word recognition output
easily without extra model training and decoding.
Similar to the fact that there are correct words in
incorrect utterances, there are also correct subwords
in incorrect words. By looking at recognition output
at subword level, a more view of the recognition
result at a finer linguistic scale can be obtained.

In this study the
probability is extended from word to subword and

generalized posterior

utterance levels for the verification of recognized
subwords and utterances in an LVCSR. The approach
is tested on a Chinese database.

2. Generalized Posterior Probability

Generalized posterior probability (GPP) is a

probabilistic confidence measure for verifying
optimally the recognized entities at different levels,
e.g., It was first

applied to verification at the word level under

subword, word and utterance.

various conditions [6-8].

In continuous speech recognition, the
conventional word posterior probability (WPP) is
computed by summing the posterior probabilities of
all string hypotheses in the search space bearing the
focused word, w, starting at time s and ending at

time ¢, given as

plxz tw, ) plw, tw)

plwiseial)= Y 2= ) )

M, [wis, ]

defined by the
corresponding triple, [w; s, t]; x,' is the sequence of

where a word hypothesis is

acoustic observations; M, the no. of words in a string

hypothesis; p(x;7), the probability of the acoustic
observations; T, the length of the complete acoustic
observations. WPP is computed for each recognized
word, without using any additional models (e.g.,
anti-models) from a word graph or N-best list
generated during the decoding process.

Generalized ~ Word  Posterior  Probability
(GWPP) is a generalization of WPP to take into
account of three issues in computing WPP:

a) Reduced
recognition is almost always pruned to make the

search space: Search space in

search tractable. A reduced search space (e.g.,

word graph or N-best list), rather then the

original full search space, is used when
computing the GWPP, including the acoustic
observation probability, p(x,T) (see Eqn. 1).

b) Relaxed time registration: A word is defined as a
triple by the word identity, its starting and
ending time. The starting and ending time of a
word, a by-product of the search, is affected by

threshold,

noise, etc. It is therefore

various factors like the pruning
model resolution,
desirable to relax the time registrations for
deciding whether the same word reappears in a
different string hypothesis. In GWPP, words
with the same identity and overlapping in time
registrations are considered as reappearances.

c) Reweighted acoustic and language model

likelihood: In continuous speech recognition,

assumptions are made to facilitate efficient

parametric modeling and decoding process. Also

incompatibilities among the components in the

recognition process exist. They include:

e Difference in dynamic range: In

likelihoods

Gaussian

theory,

acoustic computed by using

continuous mixture probability

density functions have an unbounded

dynamic range. The model
likelihoods, if based on the

n-grams, lie between 0 and 1.

language
statistical

e Difference in the frequency of computation:
Acoustic likelihoods are computed every
frame but language model likelihoods are
computed only once per word.

o Independence assumption: Neighbouring

to be

statistically independent in computing the

acoustic observations are assumed

acoustic likelihoods.
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¢ Reduced search space: The full search space
is almost always pruned. A word graph or an
N-best list of string hypotheses is used.

In order to compensate the above discrepancies,
the acoustic and language model weights are jointly
adjusted to optimize the word verification
performance and a generalized word posterior
(GWPP) is thus obtained. The

exponential weights of the acoustic and language

probability

models are labeled as a and f, respectively. The
corresponding GWPP is defined as

M
1P (e tw, ) p7(w, 1wif)
. TY)_ m=1
P([W.s.t]!xx )— VM,[;;,;:],” P(XIT) (2)
3n,1snsM

(Sputa )N (s )8
It has been demonstrated that GWPP achieves
robust word verification performance at different

search beam widths [7], signal-to-noise ratios [8],
etc., a clear evidence to demonstrate that it is a good

confidence measure for verifying recognized words.

3. Generalized Posterior Probabilities for
Subwords and utterances

GWPP was extended to other recognition units,
shorter or longer than word, such as subword or
utterance. The former one is especially useful for a
language like Chinese where subword plays an
important role in speech communication. Subword
units investigated in this study are monosyllabic
of utterances are

characters. The units

universally useful for LVCSR of all languages.

longer

When deriving GPP for various level, we aimed
at using the same word recognition output from the
LVCSR with training extra model and applying
additional decoding. This will enable the derived
GPPs readily available for different recognizers with
little overhead and computation cost.

3.1. Subword level

In order to obtain subword level acoustic

likelihood
between the subword boundaries are multiplied.

scores, scores from all frames fall

Subword boundaries are derived from phoneme
boundaries obtained in the decoding process. Since
the word level acoustic scores are also obtained
based on frame likelihoods, the products of subword

level and word level acoustic scores are preserved.
Figure 1 shows an example breakdown of a word
level acoustic score into corresponding subword

scores.
word,
acoustic = pa,, *pa,, * pa,, Im = pl,
subword,), subword,, subword, ,
acoustic =pa,,; | acoustic =pa,,, acoustic =pa,,;
im=pl, Im =pl, Im=pl,

Figure 1. Break-down of acoustic and language model
scores from word level to subword level. pa is the
acoustic score for the subword segment and it is based on
the boundaries obtained in the decoding process. p/ is the
language model score and is made to be the same at both
word and composite subword levels.

When deriving the language model scores from
the word recognition output for computing the
generalized subword posterior probability (GSPP),
we adopted an approach to take advantage of the
higher (word) level language model. All composite
subwords inherit the language model score of the
corresponding word without modification. There are
two reasons for assigning subword language model
scores this way. First, it enables us to derive
confidence measure at different levels using the
same recognition output from a single LVCSR. If we
changed the word language model to a character
language model, the recognizer is then altered.
Second, since we derived the subwords components
from the corresponding words, probabilities of
existence of these components are the same as those
of the corresponding words.

With the acoustic and language model scores
for the subwords, GSPP can then be computed in the
same way as GWPP by using Eqn. 2. The only
change is that the word, [w; s, 1], now represents a
subword with identity w, and the starting and ending
time, s and ¢, respectively. With these modifications,
the recognition output can then be verified at a lower
level using the GSPP.

3.2. Utterance level

At the utterance level, a generalized utterance
(GUPP) can be defined
similarly. Deciding whether the utterance is correctly

posterior probability
recognized does not pinpoint misrecognized parts

more precisely when compared to words or
subwords. But the main purpose of verifying an
utterance is to statistically measure the confidence

that the utterance is correctly recognized.
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Definition of the GUPP is similar to those of
the word and subword counterparts. The reduced
search space, reweighted acoustic and language
model likelihoods are similarly applied. The major
difference is that the time registration relaxation is
no longer necessary, since all string hypotheses
share the same utterance boundaries. As a result,
GUPP is defined as

pa®-pl?

—~ .« 78 (3)

Z pa® - pl?

Y hypotheses

where pa is the acoustic score; pl, the language
model score of a hypothesis; a and £, the acoustic

and language model weights, respectively.

4. Experimental Setup

4.1. Speech recognition

The LVCSR used in this study is the speech
recognition system developed at ATR [9], running in
multi-pass with a word bigram language model and a
16k word lexicon. The feature parameters included
12 MFCC, 12 AMFCC and Apower. Word graphs
were generated and then rescored using another word
trigram language model to obtain the final
recognition output. The word recognition accuracy is

about 91%.

4.2. Corpus

The corpus used for evaluation is a large

vocabulary, continuous, Chinese read speech
database — the Chinese Basic Travel Expression
Corpus (BTEC) [10,11]. It was compiled and

collected for a travel domain speech-to-speech
translation project. We extracted two subsets of
utterances as the development and test sets. Speakers
and utterances in these sets are mutually exclusive.
We summarize the information in Table 1.

Development Test
# speakers 4M+4F 16 M +16 F
# utterances 841 3,437
# words 4,030 16,781
# characters 6,327 25,939

Table 1. Summary of the development and test sets
extracted from the Chinese BTEC corpus

4.3. Verification

Generalized posterior probabilities at subword,
word and utterance levels were computed separately.
Optimal values for the acoustic and language model
weights (a, f)
determined from the development set by a full grid

and decision threshold were
search of the total error contour. Other efficient
search algorithms (e.g., steepest descent, Downhill
Simplex search) for parameter optimization have
These

parameters were then used in the test set for

been also proposed in ([7]. optimized

evaluation.

4.4. Evaluation Measures

Evaluation of the verification task is based on a
normalized total decision error, or the confidence
error rate (CER) [5]. Total errors include false
acceptance (FA) of incorrectly recognized units and
false rejection (FR) of correctly recognized units.
The total is then normalized by the number of
recognized units in the LVCSR output.

# false acceptance + # false rejection

CER = x100% (4)

#recognized units

The CER is one when all correctly recognized
units are rejected and all incorrectly recognized
units (insertions and substitutions) are accepted. A
CER of zero means that all units are correctly
verified. In our experiments, parameter optimization
using the development set is based on the
minimization of this error measure.

A modified accuracy is also used for evaluation
of the
Essentially, it measures the accuracy of the accepted
units after all units with GPP below the threshold

(determined from the development set) are rejected.

recognition accuracy after rejection.

mAce — (#Cor - #FR) - (#Ins - # CRI)
(#recognized units - #FR - #CRS)

x100% (5)

where
#Cor: total no. of correctly recognized units;
#FR: no. of false rejection; #Ins, no. of insertion;
#CRI: no. of insertion correctly rejected;
#FR: no. of false rejection; and
#CRS: no. of substitution correctly rejected.
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4.5. Performance reference

A baseline was used for performance

comparison in this work. It was obtained by

accepting all recognition output without any
rejection. All errors in the baseline were false

acceptance of incorrectly recognized units.

5. Results And Discussions

The total verification error (#FA + #FR)
contours at various acoustic and language model
weights for word, subword and utterance levels are
shown in Figure 2, 3 and 4, respectively. The coarse
scale plots show the contours of total errors over the
full range of parameters. Fine scale contours of

lower error regions are shown in a smaller range.

total total
errors

|

Figure 2. Total errors (test set) for word verification by
using GWPP. The coarse scale plot shows equal error
contours at different o and £ values. Optimal parameters
are determined using the fine scale plot.

total total
errors errors

Figure 3. Contour plots of total errors for subword
(character) verification using the generalized subword
posterior probability.

total total
coarse errors fine errors

Figure 4. Contour plots of total errors for utterance
verification using the generalized utterance posterior
probability.

In general, better verification performance
(darker region) is found near the lower left corner.
As mentioned in [6,7], when larger values of a and
are used, more emphasis is put on higher ranked
hypotheses. The smaller a and g are, the more
hypotheses are taken into account. In the extreme
case when both a and p are set to zero, all
hypotheses in the reduced search space are taken
regardless of their acoustic and
likelihoods, by
occurrences of the focused unit.
Figure 2 and 3 show that the

characteristics of verification at word and subword

into account,

language model counting the

error

levels are similar. However, the subword level
coarse scale error contour shows a smaller optimal
region than that of the word level. This means that
verification at the subword level is more sensitive to
the proper choice of acoustic and language model
weights.

The total error contours for utterance level
verification are depicted in Figure 4. It is observed
that the number of errors is very large along the
y-axis where the language model weight is zero.
Similar phenomenon is observed when the acoustic
model weight is zero. These imply that neither the
acoustic nor the language model score can be
confidence of a

ignored when assessing the

recognized utterance. The best verification
performance is obtained when «=0.16 and B=1.8.
Contrary to the case of subword and word
verification, the number of verification errors at the
origin, (0, 0), is very large. This is because
recognized utterances do not reappear in the search
space. As a result, verification by counting just the
reappearance is not useful at the utterance level.
Figure 5 and Figure 6 show the verification
performance in CER and recognition performance in
modified accuracy, respectively. It is observed that
at higher level (e.g., utterance), the baseline CER is
much higher. It is because the utterance recognition
accuracy is much lower than those at word and
levels. The
verification at utterance level is also the highest
(47.76%), compared to subword (4.64%) and word
(27.31%)

observed in recognition accuracy. By rejecting

subword relative improvement of

verifications. Similar trend is also
unreliable units in recognition output, the modified

recognition accuracy is improved. More importantly,
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results in Figure 5 and 6 confirm that parameters
(a, # and threshold)
development set achieve a verification performance
upper bound
bound where

determined from the

very close to the performance
(optimal), which is the upper
parameters are optimized (minimum verification
errors) using the test set.

25
B baseline
20 11 Otest
;\:? 15 [ optimal
&
610
5 E
0 -4

utterance

subword word

Figure 5. Verification performance (in CER, a normalized
total errors) at various levels. Consistent verification
performance improvement over baseline is achieved by

using generalized posterior probabilities as the
confidence measure.
< 120
e | mbaseline Otest Doptimal |
2 100 N
S 80 § -
2 \\
g 601 \ —
3 401 § -
5 20 § ||
g, \\ll

subword word utterance

Figure 6 Performance evaluation in modified word
accuracy on recognition output before (baseline) and
after (test and optimal) rejection of unreliable units at
various levels.

6. Summary

Verification of recognition output at various
levels (subword, word and utterance) is investigated
by using the generalized posterior probability. This
statistical approach takes into account of the three
issues in the computation of posterior probabilities.
Results showed that when parameters optimized for
the development set are applied to the test set for
evaluation, very small degradation in performance,
with respect to the upper bound optimal verification
performance, is observed. Relative improvements of
verification performance over the baseline are
4.64%, 27.31%, and 47.76% for subwords, words

and utterances, respectively.

7. Acknowledgements

This research was supported in part by the

National Institute of Information and
Communications Technology.

References
[1] K. Komatani and T. Kawahara, “Generating

effective confirmation and guidance
two-level confidence measures
systems,” Proc. ICSLP2000.

[2] N. Ueffing, K. Macherey, and H. Ney,
“Confidence Measures for Statistical Machine
Translation,” Proc. MT Summix IX, pp.394-401.

using
for dialogue

[3] T. Kemp and T. Schaaf, “Estimating confidence
using word lattices,” Proc. EuroSpeech1997,
pp.827-830.

[4] M. G. Rahim, C.H.Lee, and B.H. Juang,
“Discriminative  utterance verification for
connected digits recognition,” IEEE Trans.
Speech Audio Processing, vol. 5, 1997,
pp.266-2717.

[5] F. Wessel, R. Schluter, K. Macherey, and
H. Ney, “Confidence measures for large
vocabulary continuous speech recognition,”

IEEE Trans. Speech Audio Processing, vol. 9,
2001, pp.288-298.

[6] F. K. Soong, W.K.Lo, and S.Nakamura,
“Generalized word posterior probability (GWPP)
for measuring reliability of recognized words,”
Proc. SWIM2004.

[7] F. K. Soong, W.K.Lo, and S.Nakamura,
“Optimal acoustic and language model weights
for minimizing word verification errors,” Proc.
ICSLP2004.

[8] W.K.Lo, F.K.Soong, and S.Nakamura,
“Robust verification of recognized words in
noise,” Proc. ICSLP2004.

[9] T. Shimizu, H. Yamamoto, H. Masataki,
S. Matsunaga, and T. Sagisaka, “Spontaneous
dialogue speech recognition using cross-word
context constrained word graph,” Proc.
ICASSP1996, pp.145-148.

[10]J. S. Zhang, M. Mizumachi, F. K. Soong, and
S. Nakamura, “An introduction to ATRPTH: a
phonetically rich sentence set based Chinese
Putonghua speech database developed by ATR,”
Proc. ASJ Fall Meeting 2003, pp.167-168.

[11]H. Kashioka, “Grouping synonymous sentences
from a parallel corpus,” Proc. LREC2004,
pp.391-394.

—264—



