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Abstract This paper describes an algorithm for efficient building of Weighted Finite State Transducers for speech
recognition when high-order context-dependent models of order K > 3 (triphones) with tied states are used.
After discussing some inefliciencies of the standard compilation method which make the use of high-order con-
text-dependent models cumbersome and sometimes even impossible because of memory constraints, we show how
an algorithm to build a part of the needed composed transducers directly from the decision trees in combination
with an improved compilation process can lead to much faster, simpler and more memory-efficient compilation. In
our case it also resulted in substantially smaller final networks. With the described algorithm it is simple to use
high-order full cross-word models with little overhead directly within a one-pass time-synchronous search, which we
test comparing resulting final network sizes, recognition rates and speed on a large, spontaneous Japanese speech
database. Using the proposed algorithm it is possible to do real-time recognition using full cross-word quinphones
with a large acoustic model in about 125MB of memory at about 9% search error.
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1. Introduction

In almost all speech recognition systems context-
dependent (CD) acoustic models are used since their use
reduces assumptions and improves recognition rates over us-
ing context-independent models. In most cases these are
triphones (order K = 3) observing a context of +/- 1 phone,
but higher order models have been in use as well since it
often leads to additional improvements([1][2]. We observed
that especially often occurring words like for example func-
tion words and digits usually benefit from higher-order mod-
els because these words’ high occurrence frequencies in the
training data will often result in unique observation state
sequences for them when used with decision-tree tied-state
acoustic models. This in turn leads to a higher proportion
of parameters allocated to these often occurring words and
therefore usually to better overall recognition rates.

The main reason for not using models of higher order than
triphones are the difficulties encountered during training and
decoding. There are some minor practical issues related to
training of CD models of order K > 3 which are briefly dis-
cussed below. The difficult part with respect to high-order
CD models is to make proper use of them during decod-
ing within and in-between words (cross-word models). For
large scale systems higher-order models are usually used in
rescoring passes [1][2] where the decoding process is rela-
tively simple because of the limited number of hypotheses at
any time. Among all the methods proposed for decoding with
context-dependent models so far the probably most elegant
is the handling of context-dependency within the Weighted
Finite State Transducer (WFST) framework [3] [4][5]. The
principal advantage when using WFSTs is that the decoding
process is completely decoupled from dealing with context-
dependency since the CD models are compiled in advance
into a network that treats context-independent and context-
dependent (cross-word) models of any order exactly in the
same way. The difficulty lies in the compilation process itself
when higher order models are used.

In section 2. we first discuss some minor practical prob-
lems when training CD models of high context order. For
usage of these models in a WFST framework we discuss in
section 3. the traditional way of handling CD models, high-
light some of its disadvantages which can become severe for
context-dependent models of order K' = 5 and greater, and
then present a more efficient method which allows to compile
WFSTs a lot faster, more memory efficiently, and in our case,
into a lot smaller and therefore more efficient final networks.

In section 4. we report on results of experiments with
different order models using a large Japanese spontaneous

speech database (CSJ lecture speech corpus) [6] and compare

resulting network sizes, recognition speeds and recognition
accuracies for different setups, which show that high-order
models can be used without much overhead right from the
start (and not only in a rescoring pass) in a one-pass time-

synchronous search.

2. Issues in high-order context-dependent
model training

Here we discuss briefly three minor issues when train-
ing high-order CD models: 1) the expansion into context-
dependent state-graphs, 2) the collection of statistics for pho-
netic decision trees, and 3) the building of the phonetic de-
cision trees.

* Expansion into context-dependent state-graph:
When forward-backward training is used the occurring phone
graphs during training (containing optional pauses and pos-
sibly multiple pronunciations for ML training, and addition-
ally all competing hypotheses in case of discriminative train-
ing for the denominator) are in our case expanded on the fly
into their corresponding state-graphs of the required context
order. We don’t expand the silence and noise models.

® Collection of statistics for phonetic decision
trees (PDTs): When using the A-set of the lecture speech
training data of the CSJ corpus (230h of speech) the number
of occurring unique contexts for quinphones is about 487k
compared to only 14k for triphones, and for all of these (times
the number of used states per phone, in our case three) Gaus-
sian statistics need to be collected and stored, which adds up
to an annoyingly large > 500M B in case of quinphones and
39-dimensional features. We collect the PDT statistics using
Viterbi alignment which can be done fairly quickly (15 min
in our case) since it can be distributed over a large num-
ber of machines. In our case summing up the statistics from
all machines takes by far the most time which we reduced
significantly using a hierarchical summation scheme.

® Building the phonetic decision trees: We build
one PDT per phone and state position as used in{7]. In our
case a roughly 5-fold speed-up of the method described in [7]
is achieved by only adding up the “YES” statistics for each
proposed split and calculating the “NO” statistics by sub-
tracting the “YES” statistics from the parent statistics. To
build all decision trees for quinphones using 1.46M Gaus-

sians takes then roughly 15 min.

3. Issues in high-order context-dependent
model usage

Decoding with context-dependent models is conceptually
simple in a WFST framework since all information is com-
piled in advance (or on-the-fly) into one large WFST taking

state IDs as inputs and producing word IDs as outputs. The
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difficulty lies in the compilation process itself.

The method described in [3] of building the complete net-
work mapping state observation IDs to words involves build-
ing four separate transducers first:

e transducer H mapping (sequences of) state IDs to (se-
quences of) CD models

e transducer C mapping (sequences of) CD models to
(sequences of) phones

e transducer L mapping (sequences of) phones to (se-
quences of) words, also called the lezicon

e transducer G mapping (sequences of) word IDs to (se-
quences of) word IDs with probabilities, also called the gram-
mar or language model
The three transducers H, C, and L are extended to their
determinizable versions H, C and L by introduction of aux-
iliary symbols as explained in[3]. The four transducers are

then compiled into a single transducer X as follows:
X = fact(m.(min(det(H o det(C o det(L o G)))))) (1)

with the occurring operations defined as explained in [3]:

e Ao B: weighted composition of A and B

e det(A): weighted determinization of A

* min(A): weighted minimization of A

® 7.(A): replacement of auxiliary symbols by € in A

® fact(A): factorization of A
The method described above needs an FST H mapping state
IDs to CD models and another FST C to map CD models
to phones. The disadvantage of using two separate FSTs is
that usually phonetic decision trees are used to determine
clustered state IDs shared among many models where CD
model names don’t have much meaning anymore - many
different CD models will map to the same or similar state ID
sequences after optimization of the resulting network, but
this is ignored when building the individual FSTs. The size
of C grows exponentially with the context order K — for K-
phones it has NX~! states and N¥ arcs for a phone set of
size N. Even when limiting the size of C and H by using
only the contexts occurring in the dictionary (for high K
these will also be many because of cross-word effects), gener-
ation and subsequent processing of C and H is cumbersome
for context order K > 4 and N > 40 and makes it virtually
impossible to use CD models with K > 5 because of mem-
ory constraints during the final optimization stages of Eq.(1)
when using a large L and G.

It is much more efficient to generate the determinizable
composition of H and C (H o C) directly from the PDTs as
shown below and attach then the necessary auxiliary sym-
bols. This will alter the overall compilation process given
in [3] and resulted in our case besides being much faster (to-

tal generation time of HoC is only a few seconds for triphones

to minutes for quinphones) and more memory-efficient also in
substantially smaller final FSTs of about 20-25% the original
size.

3.1 Direct Construction of Transducer H o C

Transducer H o C mapping sequences of observation state-
IDs directly to context-independent phone sequences is di-
rectly constructed as follows assuming context-order K and
number of basic phones N with a total of S phonetic decision
tree leaf nodes altogether. We denote the resulting trans-
ducer as HC which includes the auxiliary symbols needed
for determinizing its composition with the other transducers
L and G in later composition stages.

3.1.1 Step 1: Generation of PDT leaf node bitmaps

For each PDT leaf-node generate a two-dimensional
bitmap that describes what phone n is allowed at what
context-order position k, such that bitmap B;[n][k] = 1 only
when phone n allowed at position k. This can be done ef-
ficiently in a recursive procedure going down the phonetic
decision tree. Each of the S bitmaps describes the set of
all possible K-phone order CD models which belong to this
PDT leaf node.

position
phone |0 1 2 3 4
a 11010
a: 011001
b 11010
by {0 1 010
z 01010

Tab. 1 Bitmap example for one PDT leaf node for
context-order K =5 (quinphones). In this exam-
ple phone a: is the center phone and for example
phone z is only allowed at positions right before

and after the center phone.

3.1.2 Step 2: Generation of bitmaps and state ID se-
quences for each phone

For each phone n generate all possible state ID sequences
(usually three states long) and their corresponding bitmaps
by multiplication (binary AND operation of bitmaps) of all
possible combinations of the basic bitmaps for each state
position within that phone. If the resulting bitmap has at
every position k at least one phone active (at least one '1’
per column), the corresponding CD model set has at least
one member and therefore is a valid combination. For three

states this can be written for phone n as:

Bn; = Bs1 & Bs» & Bgs (2)

V s{i} € S(state pos = i, phone = n)

—255—



This step is done efficiently by first generating all combi-
nations of the first and second state, then filtering out the
invalid combinations, and then combining the result with the
third state (and so on if more states are used). If not done
this way, the number of combinations grows exponentially
with the number of state positions in the phone and can even
for only three states become lengthy to calculate since the
number of leaf nodes for a specific state position and phone
can be up into the hundreds generating possibly millions of
combinations, which will mostly be invalid. Given a total of
a few thousand states S there will be at most a few hundred
to the low thousands (denoted by J.) valid state sequences
per center phone.

We store all valid resulting state ID sequences in a hash ta-
ble indexed by center phone and counter j per center phone
since they will be needed in later steps again.

3.1.3 Step 3: Generate within-phone connections

Generate the within-phone connections of transducer
HC for each resulting valid state ID sequence B, ; as a sim-
ple sequence of arcs with state ID as input and € as output,
and add optionally auxiliary symbol loops (see[3] for their
meaning) at the first state of each sequence.

3.1.4 Step 4: Generate between-phone connections

Generate between-phone connections of HC by con-
necting the sequences generated in the previous step with
arcs having € as input and the phone of the sequence it is
connecting to as output. To find out which sequences con-
nect to other sequences that are in fact valid combinations
allowed by the original decision tree, multiply a binary right
shifted (symbol >>’ in C, C++) version of all bitmaps from
step 2 with all non-shifted bitmaps from step 2 — if the re-
sulting bitmap has at least one phone left at all positions
but the first one (there cannot be any phone left at the first
position because it was masked out by the shifted bitmap),

then it is a valid connection. This can be written as:

Bnijin2j2 = (Bnij1 >> 1) & Bnaj2 (3)
Vnln2€N
V 1,52 € Jn

3.1.5 Step 5: Generate initial/final state connections

Generate initial/final state connections by connecting
them to the sequences for which left/right context is un-
known (initial arcs same as in step 4, final arcs just €/e),
and optionally leave some of these out if you want to force
recognition to start/stop with only certain phones.

3.2 New Compilation Process

The overall compilation process Eq.(1) needs to change
since there are no separate transducers H and C anymore.

It is now:

X = fact(m.(min(det(det(HC) o det(L o ))))) (4)

As can be seen it involves separate determinization of HC,
which will be very beneficial when tied-state models are used
since many state sequences will share a common beginning,
and LoG as well as of their composition det(H C)odet(LoG).

4. Experiments & Results

We used the A-set (male & female) lecture speech sub-
set (186k utterances, 230h) of the CSJ Japanese sponta-
neous speech database for training and test set 1 (10 lectures,
26515 words, perplexity 78.7 for trigram, out-of-vocabulary
rate 2.4%) with a 30k dictionary and trigram for testing [6].
Preprocessing is standard 39-dimensional MFCCs, all states

have 16 diagonal Gaussians each. All models were trained

model size(C) size(det(HC))
K /S | (#nodes/arcs) | (#nodes/arcs)
2/1k 43/1.8k 2k /22k
2/2k 3.1k/35k
3/1k 1.8k/80k 4.4k/16k
3/2k 8.6k /25k
3/3k 12k/31k
3/4k 14k/35k
3/5k 16k/39k
4/2k | 80k/3.4M 12k/36k
4/3k 18k/55k
4/4k 24k /72k
4/5k 31k/92k
5/2k | 3.4M/147TM 18k/60k
5/3k 31k/99k
5/4k 45k/142k
5/5k 58k/184k

Tab. 2 Sizes of full C and determinized HC without aux-
iliary symbols for models with context order K
and S states for CSJ test set 1 conditions with

basic phone set size N = 43.

from flat start with an identical training procedure which
was known to give non-optimal individual results (e.g. PDT
statistics were collected from only monophone alignments)
but allows fair comparison in a reasonable amount of time.
To avoid search errors, all experiments were run with a large
beam (250).

Tab.2 shows the hypothetical sizes of the full transducer C
and intermediate determinized transducer HC in our case us-
ing the proposed algorithm still containing all possible map-
pings from state ID sequences to phone sequences allowed by
the acoustic model. As can be seen, the exponential explo-
sion of the complexity of C is clearly a problem.

For recognition, Tab.3 shows that models of similar com-

plexity produce better results the more context is observed
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although the actual absolute improvement in recognition rate
is rather small. Final network size and decoding time in-
crease only moderately for higher context order due to the
large amount of sharing of CD models and corresponding
state sequences.

In our case, experiments for quart- and quinphones were
only possible when using our algorithm to directly gener-
ate HC because of the otherwise too large memory and/or
time demands of the standard composition algorithm Eq.(1)
as outlined above. But even when the new algorithm was
used for triphones we observed besides much faster overall
compilation a large reduction in final network size (of about
75 — 80%) which showed that our original composition pro-
cedure based on Eq.(1) was suboptimal.

As shown in the last three rows of Tab.2, real-time decod-
ing with full cross-word quinphones is possible at 9% search
error using a reduced beam and on-the-fly composition [8] in

less than 125 MB total memory.

model | size(X) LM | error | RTF
K/S | (#tarcs) | weight
2/1k 2.21M 14 26.9% | 4.8
2/2k 2.22M 14 26.8% | 5.8
3/1k 24T 14 24.8% | 6.0
3/2k 2.80M 15 23.3% | 6.2
3/3k 3.02M 15 22.8% | 6.3
3/4k 3.21M 15 22.7% | 6.4
3/5k 3.35M 15 22.6% | 6.6
4/2k 2.85M 15 23.2% | 6.5
4/3k 3.15M 15 23.0% | 6.7
4/4k 3.33M 15 |22.6%| 6.8
4/5k 3.54M 15 22.5% | 7.1
5/2k 3.38M 15 23.2% | 7.1
5/3k 3.93M 15 22.7% | 8.0
5/4k 4.38M 15 22.5% | 8.8
5/5k 4.75M 15 |221% | 9.9
5/3k | 346k/816k 15 24.8% | 0.99
5/4k |426k/816k | 15 |24.6% | 1.04
5/5k |499k/816k | 15 |24.3% | 1.08

Tab. 3 Unfactored full network sizes, best LM weights,
error rates and real-time factors for models with
context order K and S states on CSJ test set 1.
Size of networks in last three rows is listed sep-
arately for HC o L and G because they are used

here in online-composition mode.

5. Summary

‘We showed how the direct construction of the transducer
mapping sequences of observation state IDs to sequences
of phones from the phonetic decision trees of a tied-state

acoustic model can lead to a simpler and faster compilation

procedure for the final transducers needed for decoding in
speech recognition. The proposed algorithm makes it easy
to use high-order full cross-word context-dependent models
in a one-pass time-synchronous search with little overhead
compared to the regularly used triphones, which used to
be cumbersome or even impossible for high-order context-
dependent models because of memory constraints when the
standard method was used.

In our case, the new algorithm resulted not only in a signif-
icant simplification of the compilation algorithm, but also in
much smaller and therefore more efficient final networks. We
showed recognition results for a large Japanese spontaneous
speech database (CSJ corpus), which can be decoded in real-
time in less then 125 MB total memory using full cross-word

quinphones at about 9% search error in a one-pass search.
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