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Abstract In this paper, we present a two-stage noise spectra estimation approach. After the first-stage noise
estimation using the improved minima controlled recursive averaging (IMCRA) method, the second-stage noise
estimation is performed by employing a maximum a posteriori (MAP) noise amplitude estimator. We also develop
a regression-based speech enhance system by approximating the clean speech with the estimated noise and original
noisy speech. Evaluation experiments show that the proposed two-stage noise estimation method results in lower
estimation error for all test noise types. Compared to original noisy speech, the proposed regression-based approach
obtains an average relative word error rate (WER) reduction of 65% in our isolated word recognition experiments
conducted in 12 real car environments.
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. rather than the minima value, quantile based method [2] can
1. Introduction ) o o o
be viewed as a generalization of the minimum statistics (MS)
approach [3].

Nolse spectra estimation plays a fundamental role in More recently. Cohen proposed an improved

speech enhancement and speech recognition. Conventional
noise cstimation methods, which are based on the explicit
detection of voice activity, can be difficult in the case of vary-
ing background noise or if the signal-to-noise (SNR) is low.
In[1]. a number of methods which do not need any explicit
voice activity detectors (VADs), such as energy clustering,
Hirsch histograms. low energy envelope tracking, and so on,

arce excellently summarized. With picking a quantile value

minima controlled recursive averaging (IMCRA) approach [4]
which involved the use of minimum statistics and spcech
presence probability. On the other hand. once the estimated
noise spectra are obtained. one can employ an enhancement
filter to estimate the spectral amplitude (or component) of a
speech signal in the second stage, by assuming an ad hoc sta-
tistical model for speech and noise [5][6]. In this paper, we

estimate the spectral amplitude (or component) of the noise
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signal in a similar manner to that used in speech spectral
estimation in the second stage. Therefore, a two-stage noise
spectra estimation is developed. In light of the statistical in-
formation for short-time spectral amplitude (or component),
the second-stage noise estimation can be expected to yield
a further improvement of estimation performance. In this
paper, specifically, we develop a second-stage mazimum a
posteriori (MAP) noise amplitude estimator based on first-
stage IMCRA noise estimation. However, the methods used
in the first stage and second stage are not limited, and can
be extended to other types of first-stage and second-stage
noise estimators. The finally estimated noise spectra can be
further integrated into a speech enhance system.

Among a variety of speech enhancement methods, spectral
subtraction (SS) [7] based method and short-time spectral es-
timation (STSE) based method are commonly applied. Most
of SS based methods make assumptions about the uncorre-
lation of the speech and noise spectra, allowing for simple
linear subtraction of the estimated noise spectra. Although
scaling factors for emphasis or deemphasis of the estimated
noise have been proposed (e.g.,[8]) to reduce the musical
tone effects, the specification of the scaling factors is usu-
ally done experimentally and is never statistical. The STSE
based methods can lead to a nonlinear spectral estimator by
introducing a a priori SNR, however, they requres the as-
sumptions about an ad hoc statistical model for speech and
noise [5] [9] [6]).

To realease the assumputions that SS based and STSE
based methods require, some nonlinear estimators have been
implemented by through look up tables[10], curve fitting
[11] and neural networks [12] [13][14][15]. The approach de-
scribed in this paper uses neural networks to approximate the
log spectral of clean speech with the inputs of the log spec-
tra of the noisy speech and estimated noise. The proposed
method differ from [12][13][14] in that it is a minimum mean
square error (MMSE) estimator in the log spectral domain,
since MMSE criterion in the log domain is more consistent
with the human auditory system and distance metrics used
in speech recognition system [16]. Although MMSE estima-
tors in the log spectral domain are employed in [16][15], the
proposed method discriminate itself against them in that we
do not make the assumption about the addition of log power
spectra, which may not hold, and that we do not need to
estimate the mean and variance of the log speech spectra.
While the previous works are usually evaluated on the sim-
ulated noisy data. i.e., by artificially adding the noise to the
clean speech, the proposed approach is implemented using
real stereo data and deals with more general conditions, e.g.,
channel distortion.

To realease the assumputions that SS based and STSE

based methods require, some nonlinear estimators have been
implemented by through look up tables[10]. curve fitting
[11] and neural networks [12][13] [14] [15]. The approach de-
scribed in this paper uses neural networks to approximate
the log spectral of clean speech with the inputs of the log
spectra of the noisy speech and estimated noise. While other
neural network based enhancement or compensation meth-
ods are implemented in time domain [12] or in cepstrum
domain [13][14], the proposed method is a minimum mean
square error (MMSE) estimator in the log spectral domain,
since MMSE criterion in the log domain is more consistent
with the human auditory system and distance metrics used
in speech recognition system [16]. Although MMSE estima-
tors in the log spectral domain are also employed in [16] [15],
the proposed method differs from them in that we do not
make the assumption about the addition of log power spec-
tra, which may not hold, and in that we do not need to
estimate the mean and variance of the log speech spectra.
The organization of this paper is as follows: In Section 2,
we present the proposed algorithms including a noise am-
plitude estimator and the regression method. In Section 3.
we evaluate the proposed two-stage noise estimation method.
In Section 4, the regression-based in-car speech recognition

experiments are described. In Section 5, we summarize this

paper.
2. Algorithms

2.1 MAP noise amplitude estimator

We assume that the noisy signal z(z) is given by s(2)+n(z)
, where s(2) is the clean speech signal which is assumed to be
independent of the additive noise n(:). By using short-time
Discrete Fourier transform (DFT), in the time-frequency do-

main we have
X(k. 1) = S(k,l) + N(k.1),
where
X(k.l) = R(k.l)exp{yp=(k.1)},
Sk, 1) = A(k,l)exp{rp:(k.1)}.
N(k, 1) = B(k.l) exp{jen (k. 1)},

with the frequency bin index k and the frame index I. We
will drop both the frequency bin index k and the frame index
! in this subsection, for compactness.

The MAP noise amplitude estimator is given by
B = argmax p(R|B)p(B), (1)

where p(-) denotes a probability density function (pdf). Let
us assume complex Gaussian models for noise and speech

spectral components with variances X, = E{|N|*} and
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Ae = E{|S|?}, respectively, where E{-} denotes the expecta-
tion operator, and the variances of their real and imaginary
parts are An/2 and \./2 respectively. We then have a Rician
likelihood p(R|B) and a Rayleigh prior p(B) as

p(B) = 2T}?exp(—f—n); (2)
2 2
p(R|B) = %exp(——B—/\t—I-{-—)Io(%)» (3)

where Io(z) = 3 02" exp(z cos §)dé is the 0-order modified
Bessel function of first kind. Following [17], the 0-order mod-
ified Bessel function of first kind can be approximated as
Io(z) = e*/v/2mz. For obtaining the noise amplitude esti-
mator, the requirement that the gradient of log[p(R|B)p(B)]
with respect to B vanishes yields

1 2R 1

A+ 34~ 5~ 3= )

Therefore, the gain function for the noise amplitude estima-

tor can be obtained as

B 1 1 2 1
Gv=%=3n+0 " (2(1+E)) +47(1+%)’(5)

where the a priori and a posteriori SNRs are defined as
&€= X:/An and v = R? /X, respectively [5].

2.2 Regression based enhancement

In this proposed method, we require the reference clean
speech for regression training. Let S X(E) and N de-
note the log mel-filter-bank (MFB) vector obtained from the
reference clean speech, the original noisy speech and the es-
timated noise, respectively. Let S (m,1), X{*)(m,1) and
N (m, 1) denote their corresponding elements in the filter
bank m and at frame [, i.e.,

S5 (m,1) =1log Y _ ri"|S(k, ),
k

XWB(m, 1) =log Yy ri’| X (k. D),
k

NH (m,1) =log Y ri’IN(k, 1),
k

where r* denotes the weights of the filter bank m. Let 83
denote the estimated log MFB vector obtained from X
and N(Y) . Each element of the log MFB vector of the ref-
erence clean speech is approximated independently by em-
ploying multi-layer perceptron regression method, where the
network with one hidden layer composed of 8 neurons is used,

le.,

SE (m, 1) = b, +

8
p=1

Z (wm,p tanh (bm_p + w,:,‘p_\’(“(m. 1) + w,, pl\i(“(m, I(f)))

IMCRA H IMCRA+MAP

NDR [dB]
C=-NWAIEUON®D

PO

white

K 1 Averaged NDR values for the IMCRA and the two-stage
IMCRA+MAP noise estimators.

where tanh(-) is the tangent hyperbolic activation func-
tion. The parameters © = {bm, Wm p, W5, p, Wi p, bm,p} are

found by minimizing the mean squared error:

£(m) = Y_[s") (m,1) - ) (m, )%, )

=1
through the back-propagation algorithm [18]. Here, L de-
notes the number of training examples.

Although both the proposed regression-based method and
log-spectra amplitude (LSA) estimator [9] employ the MMSE
cost function in the log domain, the former makes no assump-
tions regarding the distributions of the spectra of speech
and noise and does not require the estimation of a priori
SNR. In addition, compared to generalized spectral subtrac-
tion (GSS) [7], it makes no assumptions about the indepen-
dence of the spectra of speech and noise and can benefit from
the regression weights, which are statistically optimized. Al-
though a parametric formulation of GSS have been developed
in [19] by using MMSE optimization, it also requires assump-
tions about the independence of the spectra of speech and
noise. To calculate the parameter weights, it requires fur-
ther assumptions regarding the distributions of the spectra
of speech and noise, and the estimation of a priori SNR. In
our proposed method, the parameter weights are obtained by
statistical regression training. Therefore, we do not need to
assume the independence of speech and noise. Furthermore,
the proposed method does not require the distributions of

the spectra of speech and noise, nor a prior: SNR.
3. Evaluation of noise estimation

The noise signals used in our evaluation are taken from
the Noisex92. They include white noise, pink noise, car
noise and F16 cockpit noise. The speech signals include 100
phonetically balanced sentences (10 sentences for each of 5
female speakers and 5 male speakers), which are recorded us-
ing a close-talking microphone when the car is stopped with
the engine running (CIAIR in-car speech corpus[20]). The
speech signals are degraded by various types of noise with

SNRs in the range [-5, 15] dB. Speech signals are digitized
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D

2 Averaged segmental SNR improvement for the enhanced
speech using the IMCRA and the two-stage IMCRA+MAP

noise estimators.

into 16 bits at a sampling frequency of 16 kHz. The spectral
analysis is implemented with hamming window of 32 ms (512
samples) and a shift of 16 ms.

To compute the gain function in (5), An is obtained by
the IMCRA method [4]. A priori SNR is calculated by the
well-known “decision-directed” approach [5]. We compare
the noise spectral estimation performance using the noise-

to-deviation ratio (NDR), which is defined as

_ o ik, P
NDR [dB] = 10log,, ; Zk[/\n(’;,l) WG IF

®)

where An and A, denote the reference noise power spec-
tral and the noise power spectral as estimated by the tested
method, and L is the number of frames in the analyzed sig-
nal. Fig. 1 presents the results of NDR values averaged over
[-5, 15] dB by the IMCRA and the proposed IMCRA+MAP
estimators for various noise types. It shows that the latter
estimator obtains significantly higher NDR values.

We also examine the performance of the proposed esti-
mation method when integrated into a speech enhancement
system. We applied a MAP speech amplitude estimator for
speech enhancement, in which the gain function can be ob-

tained in a similar manner to the MAP noise amplitude and

is given as
Ak, 1) 1 1) 1
Gs = ) + .
T REY T 20+ + (2(1+§)) 4(1+1

(9)
Note that the difference between Equation (5) and Equa-
tion (9). We measure the resulting enhanced speech using

segmental SNR defined as

X;ls9)”

60 St —saaF 0

10 <
SegSNR [dB] = — 12;1
where s and § denote the reference clean speech and en-
hanced speech respectively. L is the number of frames in one

utterance. Fig. 2 summarizes the results of the segmental

Regression model training (12 speakers, 600 words)

visor mic. log MFB
speech analysis
noise | |log MFB regression
estimation| | analysis training
close-talking log MFB
mic. speech analysis =
ature -
Test data (6 speakers, 300 words transform [ rECegnition
visor mic. log MFB
speech analysis
regression
noise | |log MFB
estimation| |analysis

3 Diagram of regression-based speech recognition.

SNR improvement for various noise types (averaged over [-
5, 15] dB for each type). The enhanced speech obtained by
using the proposed IMCRA+MAP noise estimators consis-
tently yields a higher improvement in the segmental SNR for

all noise types.
4. In-car speech recognition experiments

The speech data used is from CIAIR in-car speech cor-
pus [20]. The speech captured by a microphone at the visor
position is used for recognition experiments. The speech col-
lected at a close-talking microphone (by wearing a headset)
is referred to as reference speech. Speech signals are digi-
tized into 16 bits at a sampling frequency of 16 kHz. For
spectral analysis, 24-channel mel-filter-bank (MFB) analy-
sis is performed on 25 millisecond-long windowed speech,
with a frame shift of 10 milliseconds. Spectral components
lower than 250 Hz are filtered out because the spectra of the
engine noise are concentrated in the low-frequency region.
Then log MFB parameters are estimated. The estimated
log MFB vectors are transformed into CMN-MFCC vectors
using Discrete Cosine Transformation (DCT), and then the
time derivatives are calculated. The final feature vectors
used in the recognition system consist of 12 CMN-MFCCs +
12 A CMN-MFCCs + A log energy.

We performed isolated word recognition experiments on
the 50 word sets under 12 real car driving conditions (3 driv-

ing environments X 4 in-car states as listed in TABLE 1).

% 1 12 driving conditions

idling
driving environment | city

expressway

normal
in-car state air-conditioner (AC) on low level

air-conditioner (AC) on high level

window (near the driver) open *
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18
noise estimator

original MCRA

enhancement
method MAP
[ 4 Averaged SDR values defined in Equation (11) for different

speech.

Fig. 3 shows a block diagram of the regression-based speech
enhancement system for a particular driving condition. For
each driving condition, the data uttered by 12 speakers is
used for learning the regression weights and the remaining
words uttered by 6 speakers (3 male and 3 female) are used
for open testing. Two versions of 1,000-state triphone Hid-
den Markov Modes (HMM) with 32 Gaussian mixtures per
state trained with a total of 7,000 phonetically balanced sen-
tences (3,600 were collected in the idling-normal condition
and 3,400 were collected while driving the DCV on the streets
near Nagoya university (city-normal condition)), are used
for acoustical models. One, by the name of “CloseTalking-
HMM?”, is trained with 7,000 phonetically balanced sentences
collected at the close-talking microphone, and the other, by
the name of “Visor-HMM?”, is trained with the sentences col-
lected at the visor microphone.

For comparison, a MAP speech amplitude estimator in
Equation (9) is also applied, Improved minima controlled
recursive averaging (IMCRA) method [4] was used to esti-
mate the noise estimation. The two-stage noise estimator
(named “IMCRA+MAP”), in which MAP noise amplitude
estimator was employed after the first-stage IMCRA. was
also performed for comparison.

We first evaluated the approximation performance of the
proposed regression method and two-stage noise estimator,
by using the signal-to-deviation ratio (SDR), which is given
by

21 2 (S (m, O
T LS (m 1) = S0 (m, )
(11)

where SV (m,1) and $*)(m,l) denote the reference log

SDR [dB] = 10log,,

MFB element from the close-talking microphone and the es-
timated log MFB element respectively. L denotes the num-
ber of frames during one utterances. The SDR values are
averaged over the number of utterances. Fig. 4 shows the

SDR values obtained using different methods (averaged over

CloseTalking-HMM B Visor-HMM

5 e
noise estimator odginal

enhancement MAP

regression
method 9

B 5 Averaged word recognition performance for different speech.

12 driving conditions). With IMCRA estimator, the regres-
sion method yields higher SDR value, which demonstrates
the better approximation performance, compared to the en-
hanced speech using (9). SDR values are further improved
by using IMCRA+MAP noise estimators.
method using the IMCRA+MAP noise estimator yields the
highest SDR, which results in an improvement of approx-

The regression

imately 4 dB compared with that of the original speech.
These results clearly demonstrate the effectiveness of the pro-
posed regression method and two-stage noise estimator.
Fig. 5 shows the recogntion performance (averaged over
12 driving conditions). With “CloseTalking-HMM” and IM-
CRA noise estimator, the enhanced speech using (9) provides
a significant improvement compared to the original speech.
The proposed regression method yields furthermore higher
recogntion accuracy, which can be expected from the SDR
values in Fig. 4. Using the two-stage IMCRA+MAP noise
estimator provides a further improvement. The recognition
results with “Visor-HMM?” are consistent with the ones with
“CloseTalking-HMM” . “Visor-HMM” performs better than
“CloseTalking-HMM?”, in our opinions, in that the mismatch
between the training data (idling-normal and city-normal
conditions) collected at the visor microphone and the en-
hanced test data is smaller. The regression method with
IMCRA+MAP noise estimator and “Visor-HMM” performs
best and achieves an accuracy of 91.7%, an average relative
word error rate (WER) reduction of 65% compared to origi-

nal noisy speech.
5. Summary

In this paper, a two-stage noise spectra estimation ap-
proach and a regression-based speech enhancement approach
are proposed. The second-stage enhancement-filter-like noise
estimation is performed after the first-stage conventional
noise estimation. In the proposed regression-based speech
enhance system. the log spectra of the clean speech are ap-
proximated by using those of the estimated noise and the

original noisy speech. Lower estimation errors are obtained

—221—



by using the proposed two-stage noise estimation method.

Use of the regression-based method results in a significant

improvement in recognition accuracy.
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