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Abstract This paper describes the application of Mixtures of Probabilistic Principal Component Analyzers (MP-
PCA) for modeling the observation distributions in a speech recognition system. The MPPCA model is a mixture
of Gaussians with a constrained covariance approximating a full covariance with less effective parameters whose
complexity can be controlled by the user. The paper summarizes the necessary basics of the MPPCA model, de-
scribes a simple extension of the basic model to set the user-defined complexity of the constrained covariance in
a more automatic way and describes how to deal with numerical problems occuring for typical speech recognition
systems. The MPPCA model is tested against a diagonal covariance and a full covariance model for our so far best
acoustic model with 5000 quinphone clustered states and 80000 Gaussians total on a large, spontaneous Japanese
speech task. Results show that we can improve error rates on the standard test set from 22.2% to 19.7% by moving
to full covariances. For several MPPCA models tested we reach the same error rates with less effective parameters
but fail to improve over using full covariances, for which possible reasons are discussed.
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. ance structures that made them popular for use in speech
1. Introduction

recognition systems. Advantages include a) robust estima-

Most speech recognition systems use Hidden Markov Mod- tion of covariance parameters since their number grows only
els (HMMs) with Gaussian mixtures to model the observa- linearily with the dimensionality d of the feature space, b)
tion distributions. In most cases these are diagonal Gaus- simple implementation, c) memory efficient accumulation of
sians which have a number of advantages over other covari- sufficient statistics and storage of models, d) several schemes



for fast likelihood calculation known and e) the often heard
property that a mixture with diagonal covariances can ap-
proximate any density given its parameters are correctly cho-
sen. This last point is from a practical standpoint a little
misleading since in most applications there is not enough
data and/or parameters in the mixture as well as conver-
gence problems in case of many parameters to be able to
approximate the desired density with arbitrary accuracy.
The main disadvantage of using diagonal covariances is
that feature dimensions are assumed to be uncorrelated
within a Gaussian. Although typical features used for speech
recognition (e.g. MFCCs with first and second delta features
appended) are globally nearly uncorrelated they are less un-
correlated in specific subspaces which are modeled by indi-
vidual Gaussians, therefore making more elaborate covari-
ance structures an interesting alternative for building better
models. The most extreme choice is to use full covariances
which generally improve results but because the number of

parameters in this case grows quadratically with the feature

dimensionality d these are for high d easily prone to over- -

fitting when trained with typical maximum likelihood proce-
dures. Also, estimating and using full covariances in practice
generally causes some numerical problems which are in more
detail discussed below.

There are several covariance structures which try to aim
at a level of complexity between radial (diagonal covariance
structure with one shared parameter for all diagonal ele-
ments) and full covariances, most notably semi-tied covari-
ances (1], factored sparse inverse covariances [2], the extended
mazimum likelihood linear transform (EMLLT)|[3], the sub-
space of precisions and means (SPAM)[4]~[6] and finally the
mizture of inverse covariances (MIC) model [7]~[9].

One recently published general covariance model which
hasn’t been explored much for use in speech recognition is the
mizture of probabilistic principal component analyzers (MP-
PCA)[10], [11] which is characterized by an approximation
of the full covariance matrix to reduce the number of free
parameters and can be regulated by a user-defined intrin-
sic dimensionality ¢ < d. Extensions of this model include a
Bayesian approach where the intrinsic dimensionality is com-
pletely inferred from the data, leaving no significant settable
parameters for the covariances [12], [13]. An application of a
Bayesian PCA model for phoneme classification is described
in[14].

The paper is structured as follows: In section 2. we re-
view basics of the MPPCA model and discuss our approach
to dealing with some numerical and implementation prob-
lems occuring for the large number of Gaussians as used in
our speech recognition system. We decribe a simple (non-

Bayesian) extension of the model to automatically set the

intrinsic dimensionality ¢ per Gaussian. Section 3. describes
experiments with the MPPCA model using a large, sponta-
neous Japanese database (CSJ corpus). Finally, section 4.
summarizes and discusses some ideas for improved MPPCA

modeling approaches in classification tasks.
2. The MPPCA Model

This section summarizes the for this paper relevant parts of
the Mixture Of Probabilistic Principal Component Analysis
model according to[11] and explains our method of dealing
with occuring numerical problems. It also shows a simple,
but non-Bayesian way of setting the intrinsic dimensionality
g per Gaussian automatically.

2.1 Mixtures of Probabilistic Principal Compo-

nent Analyzers

Using the notation from [11] a regular mixture of Gaussians
for d-dimensional data vectors t is defined as

M
p(t) = Y mp(tli) ™
i=1

with M being the number of mixtures and m; being the ith
mixing coefficient, and defining

p(t)i) = (2,r)—d/2ic‘,|—1/2 @
P {_%(t 1) C (- #i)}

as the 7th Gaussian with C; being its d x d symmetric co-
variance matrix and p; being the mean of the data belonging
to Gaussian i. The parameters C;, s, and m; are estimated
by the EM algorithm from the NV training data vectors to
maximize its log-likelihood £ = E:;l In{p(tn)}.

In the MPPCA model the complexity of the covariance
matrix can be controlled by the settable intrinsic dimension-
ality 1 £ ¢i < d per Gaussian i, therefore allowing a finer
control of the total complexity between a radial, diagonal
or full covariance. Reference [11] shows that the constrained
covariance matrix with I; being a d-dimensional unit matrix

can be modeled as
Cc=wWwW” 4oL, 3)

with the maximum likelihood solution of the d x ¢ matrix W
being

War =Ug(Aq — ‘7210)1/2 4

where the columns of the d x ¢ matrix U, are the eigenvectors
(sorted by their eigenvalues) of the data sample covariance

matrix
s— Dt = )t = ) ®)

and corresponding eigenvalues \; in the diagonal matrix A4.



The maximum likelihood solution for o is given by

1
oML = d—q Z A (6)

with ¢ < d being the parameter to set per Gaussian. The
noise o3y can be interpreted as the average loss per dis-
carded dimension.

In practice not C directly but its inverse is needed, which
is for ¢ < d efficiently calculated as

c'= 01_2(1“ - W(e’L + WTW)'wT) (7)

avoiding the explicit inversion of the d xd matrix C, an O(d®)
process.

Estimating the parameters for the MPPCA model means
therefore after collecting full covariance statistics to pick ¢
per Gaussian, do a (sorted) eigenvalue decomposition of the
sample covariance matrix S, use Eq.(6) to find o2, calcu-
late Wasr using Eq.(4) and finally generate the constrained
inverse covariance matrix C~! using Eq.(7) or invert C di-
rectly after using Eq.(3).

It should be noted here that although use of the MPPCA
model reduces the number of effective parameters compared
to the full covariance matrix and therefore can lead to bet-
ter generalizing models, log-likelihood calculation speed and
storage requirements are not reduced, unless C™ is built out
of W and 0%, on demand each time it is needed, which will
not be efficient for most applications.

2.2 Dealing with numerical problems

In practical applications it can happen that the sample co-
variance S is not positive definite, which it needs to be a) to
be invertable by Cholesky decomposition and b) to be not
ill-conditioned in terms of all non-negative eigenvalues and
“useful” log-likelihoods if used in a Gaussian. Especially in
applications with many thousand Gaussians like large speech
recognition systems it is necessary to have a safe method to
deal with non-positive definite sample covariance matrices.
In our system we take care of this before updating C by a)
flooring the diagonal elements of S with a small positive value
and b) successively dividing the off-diagonal elements of S by
2 (therefore decreasing existing correlations) as long as S is
not positive definite, which can be checked by Cholesky de-
composition. This method guarantees that all C are always
positive definite with the minor approximation that some
Gaussians will have artificially decreased correlations.

2.3 Automatic determination of ¢

The standard maximum-likelihood MPPCA requires to set
q per Gaussian manually. To find the (possibly different) best
q for each Gaussian such that the model approximates best
the true density means to search through all possible combi-

nations of ¢ for all Gaussians, which is even for moderately

sized M and d impossible. An automatic way of determining
g can be done using a Bayesian framework [12], [13], but im-
plementation of these methods is slightly involved and hasn’t
been tried here.

A simple to implement and intuitively straight-forward
method of automatically selecting ¢ per Gaussian within the
maximum-likelihood framework is by trying to keep a fixed
relative portion of the sample covariance. Determine g such

that the total loss in variance

Ulzosa = i i (8)

q+1

per Gaussian is a fixed relative portion of the total variance

d
Ohtar = E i 9)
1
such that g is subject to optimization of the inequality

E:+l A
i

with a single parameter 0 < r £ 1 for all M Gaussians of the

<r (10)

mixture. Parameter ¢ is easily determined per iteration from
above inequality by increasing g as long as it is £ r. This
can be done for all M Gaussians leading to possibly different
intrinsic dimensionalities ¢; per Gaussian all governed by the

single parameter 7.
3. Experiments & Results

Experiments were run to compare performance of the MP-
PCA model to a regular diagonal and full covariance model
on a large speech recognition task. We used the A-set (male
& female) lecture speech subset (186k utterances, 230h) of
the CSJ Japanese spontaneous speech database for training
and test set 1 (10 lectures, 26515 words, perplexity 78.7 for
trigram, out-of-vocabulary rate 2.4%) with a 30k dictionary
and trigram for testing[15], which is currently one of the
standard speech recognition benchmarks in Japan. Acoustic
features were standard 39-dimensional MFCCs.

We used our so far best models on this task (5000 quin-
phone decision tree clustered states, 16 Gaussians with di-
agonal covariances per state) to run a single-pass retraining
(aligning Forward-Backward with our diagonal model to cal-
culate Gaussian occupation probabilities, but accumulating
statistics for the new covariance mode) to estimate for all
80000 Gaussians and mixture weights new parameters de-
pending on the wished covariance mode. Since for full co-
variances and for all MPPCA models the same complete full
covariance sufficient statistics are needed, we only had to
do a single run through the data, which is possibly slightly
suboptimal but saves the time of iteratively realigning the



complete training data with full covariance models. Besides
full covariances we built MPPCA models for different values
of r leading to various average, minimum and maximum ¢
as shown in table Tab.1. Around 30 sample covariance ma-
trices were not positive definite which was fixed using the

method explained in section 2. 2.

r | average ¢ | min/max ¢
0.95 14.57 6/25
0.98 20.16 8/29
0.99 | 24.05 10/33
0.995 | 27.33 11/35
0.998 31.42 12/37

Tab. 1 Different values of relative noise threshold r and
resulting average, minimum and maximum q for

constrained covariance matrix in MPPCA model.

For decoding we used our single pass, full cross-word
SOLON FST decoder with fully compiled FST networks de-
coding a complete lecture at a time, with a high beam of 250
and a maximum of 10000 hypotheses allowed at any time to
avoid search errors. Tab.2 shows final error rates for diago-
nal, full and all tested MPPCA covariances.

covariance error (%)
diagonal 22.2
MPPCA (r =0.95) | 21.1
MPPCA (r =0.98) | 20.1
MPPCA (r=0.99) | 19.9
MPPCA (r = 0.995) | 19.7
MPPCA (r =0.998) | 19.7
full 19.7

Tab. 2 Error rates for several different covariance struc-
tures using testset 1 of the CSJ database.

First of all the results show that for better recognition
rates it certainly makes sense to use full covariances inspite
of the vast increase of parameters to estimate — the improve-
ment over using models with diagonal covariances is surpris-
ingly large even though the diagonal covariance model is with
80000 Gaussians already rather big.

Although producing better results for some speakers, un-
fortunately none of the MPPCA models is overall better than
the full covariance model. We expected a better model for
the densities and therefore better generalization based on the
experiments described in [11] and on our own informal small-
scale density estimation experiments that were used to test
the basic implementation.

After running the experiments we realized that at least
one problem are the relative differences in the variances of
the features. Since the eigenvalue decomposition of the sam-

ple covariance matrix depends on the individual variances

of the dimensions they will need to be scaled, either all to
unity or even better weighted by their relative importance for
classification, to not loose important information when cut-
ting off the small eigenvalues. For example, the delta-energy
will have a lot smaller variance than the energy itself and
therefore runs chance to be partially deleted by the PPCA
procedure, although we know that the delta-energy is much
more important for classification.

4. Conclusions

We tested an interesting constrained full covariance model
(Mixture of Probabilistic Principal Component Analyzers)
for speech recognition on a large Japanese speech recogni-
tion task. While all MPPCA models produced better results
than using a diagonal covariance model, they failed to im-
prove over simply using full covariances, although some of
the MPPCA models achieved equal error rates with less ef-
fective parameters. We suspect that the main reason for not
improving over using full covariances is that the feature vari-
ances were not appropriately scaled according to their rela-
tive importance for classification, which needs to be tested
in the future.

Using full covariances or MPPCA models with a noise
threshold r close to one for all 80000 Gaussians in our 5000
state quinphone system improved our so far best error rate
on the CSJ testset 1 from 22.2% to 19.7%.

X L3

[1] M. F. Gales. Semi-tied covariance matrices for hidden
Markov models. IEEE Transactions on Acoustics, Speech
and Signal Processing, 7:272-281, 1999.

[2] J. A. Bilmes. Factored sparse inverse covariance matrices.
In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, volume II, pages
1009-1012, Istanbul, Turkey, 2000.

[3] P. Olsen and R. Gopinath. Modeling inverse covariance
matrices by basis expansion. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal
Processing, volume I, pages 945-948, Orlando, 2002.

[4] S. Axelrod, R. Gopinath, and P. Olsen. Modeling with a
subspace constraint on inverse covariance matrices. In Pro-
ceedings of the International Conference on Spoken Lan-
guage Processing, pages 2177-2180, Denver, 2002.

[5] S. Axelrod, R. Gopinath, P. Olsen, and K. Visweswariah.
Dimensional reduction, covariance modeling, and computa-
tional complexity in asr systems. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal
Processing, volume I, pages 912-915, Hong Kong, 2003.

[6] K. Visweswariah, P. Olsen, and S. Axelrod. Maximum likeli-
hood training of subspaces for inverse covariance modeling.
In Proceedings of the IEEE Intermnational Conference on
Acoustics, Speech and Signal Processing, volume I, pages
896-899, Hong Kong, 2003.

[7] V. Vanhoucke and A. Sankar. Mixtures of inverse covari-
ances. In Proceedings of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, volume I,
pages 900-903, Hong Kong, 2003.

[8] V. Vanhoucke and A. Sankar. Variable length mixture of
inverse covariances. In Proceedings of the European Con-



(9]

(10)

(1]

[12]

(13]

14

(15]

ference on Speech Communication and Technology, pages
2605-2608, Geneva, Switzerland, 2003.

Vincent Vanhoucke. Mizture of inverse covariances. PhD
thesis, Department of Electrical Engineering, Stanford Uni-
versity, 2003.

M. E. Tipping and C. M. Bishop. Mixtures of probabilistic
principal component analysis. Journal of the Royal Statis-
tical Society, Series B, 21(3):611-622, 1999.

M. E. Tipping and C. M. Bishop. Mixtures of probabilis-
tic principal component analysers. Neural Computation,
11(2):443-482, 1999.

C. M. Bishop. Variational principal components. In Proceed-
ings Ninth International Conference on Artificial Neural
Networks, volume I, pages 509-514, Edinburgh, UK, 1999.
C. M. Bishop. Bayesian PCA. In S. A. S. M. S. Kearns
and D. A. Cohn, editors, Advances in Neural Information
Processing Systems, volume 11, pages 382-388. MIT Press,
Cambridge, MA, 1999.

O. W. Kwon, T. W. Lee, and K. Chan. Application of vari-
ational Bayesian PCA for speech feature extraction. In Pro-
ceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing, volume I, pages 825-828,
Orlando, 2002.

T. Kawahara, H. Nanjo, T. Shinozaki, and S. Furui. Bench-
mark test for speech recognition using the corpus of sponta-
neous japanese. In Proceedings of the Spont us Speech
Processing € Recognition Workshop, pages 135138, Tokyo,
Japan, 2003.




