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Abstract We propose a automatic generation method of non-uniform and context-dependent HMM topology
and a splitting method of mixture components based on the Variational Bayesian (VB) approach. Although the
Maximum Likelihood (ML) criterion is generally used to create HMM topologies, it has an over-fitting problem.
Recently, to avoid this problem. the VB approach has been applied to create acoustic models for speech recognition.
We introduce the VB approach to the Successive State Splitting (SSS) algorithm, which can create both contextual
and temporal variations for HMMs. Experimental results show that the proposed method can automatically create
more efficient models than those by the original method. We employ the VB approach to increase the number of
mixture components. The VB approach obtained almost the same performance with the smaller number of mixture
components in comparison with that obtained by using ML-based methods.
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and temporal variations [3]. These methods used the Max-

1. Introduction imum Likelihood (ML) criterion to choose better splitting

To create acoustic models, phonetic decision tree cluster-
ing[1] is widely used as a method of generating tied-state
structures. It can generate contextual variations. the Max-
imum Likelihood Successive State Splitting (ML-SSS) algo-
rithm has been proposed as a method to create contextual

or clustering. However, the ML criterion often results in a
model that over-fits the training data. Because the likelihood
value for training data increases as the number of parameters
increases, it is impossible to find the best model by using the
ML criterion only.



To solve this problem, information criteria such as the Min-
imum Description Length (MDL) criterion and the Bayesian
Information Criterion (BIC) have been introduced as split-
ting and stop criteria for creating context-dependent Hidden
Markov Models (HMM). There are also some methods using
phonetic decision tree clustering[4], or the SSS algorithm
(MDL-SSS) [5].
the information criteria are improved. Although they work
well in practical terms, conventional information criteria re-

These methods continue to split states as

quire some assumptions, e.g., asymptotic normality, and they
cannot exactly evaluate complicated models like neural net-
works, or HMMs, which cannot satisfy such assumptions.

In the field of machine learning, the Variational Bayesian
(VB) method was proposed to avoid over-fitting by ML es-
timation [6].
to speech recogniton. Decision tree clustering with the VB
method was proposed [7], and Variational Bayesian GMMs
were applied to speech recognition [8].

We propose an automatic topology creation method using
the SSS algorithm with the Variational Bayesian method,
which we call the VB-SSS algorithm, to estimate topologies

Recently, the VB approach has been applied

more exactly [9]. The SSS algorithm can create contextual
and temporal variations. In contrast, decision tree clustering
can only create contextual variations. In([7], they describe
the general parameter estimation of HMMs based on the
VB approach and the topology estimation by tree-clustering
based on the VB approach. In the decision tree clustering,
the number of states per triphone must be decided before
clustering, and it is never changed after clustering. There-
fore, our proposed method, the SSS algorithm based on the
VB approach, has a higher number of degrees of freedom
than that of the decision tree clustering.

We also evaluate a method for increasing the number of
mixture components by using the VB approach, based on
a topology obtained by the VB-SSS algorithm. In{[7], they
evaluated two methods for constructing Gaussian mixture
models. One sets the same number of Gaussians per state
for all states, and selects an appropriate model by a VB ob-
jective function. The other determines the number of Gaus-
sians for each state by splitting and merging Gaussians in
each state with the objective function. In([8], Valente and
Wellekens produced GMMs by decreasing the number of
mixture components in each phoneme. Since the VB-SSS
algorithm generates HMM structures with temporal struc-
tures, our proposed methods consider temporal structures
to make mixture models by splitting Gaussians with the VB
approach.

In Section 2., we present the VB-SSS algorithm, and in
Section 3. explain a method for increasing the mixture com-
ponents. In Section 4., we evaluate the performance of our
proposed methods with experiments. Finally. we provide our

conclusion in Section 5..

2. Variational Bayesian Approach for SSS
Algorithm

2.1 Overview of VB-SSS

Our proposed method is based on the ML-SSS algorithm
[3]. The ML-SSS algorithm assumes that each state has a
single Gaussian distribution, and that each category can be
represented by one Gaussian distribution when sj;)litting is
performed. This algorithm also assumes that suboptimal
models can be obtained by increasing the number of mixture
components after this topology training even if such models
are not optimal for the number of parameters. Therefore,
our proposed method, the VB-SSS algorithm, also uses only
a single Gaussian model, and after this algorithm, there is a
need for a method to increase the number of mixture com-
ponents.

Figure 1 shows the flow of the VB-SSS algorithm. This
section briefly explains the VB-SSS algorithm. First, the
topology of an initial model is set and its parameters are
estimated. Second, the prior parameters for each state are
set, after which the posterior parameters for each state are
estimated, and the VB objective function, Fp, (see[6] for
details) is calculated as the baseline energy.

After that, each type of splitting is performed in the same
manner as with the ML-SSS algorithm. For each splitting,
after two new states are created, the posterior parameters
are estimated, and the energy gains of both the contextual
splitting and the temporal splitting are calculated. Next, the
state splitting with the maximum energy gain is selected. If
there is no state that can increase its energy, the splitting is
stopped. Furthermore, when F,, decreases or converges, the
splitting is stopped. Otherwise, the parameters of HMMs are
estimated, and these procedures are repeated. In this paper,
all of the posterior parameters are estimated by using all of
the data for each test splitting.

2.2 Contextual and temporal splitting

The probability density of the HMM ©, which has N,
states with one Gaussian distribution and N, transitions for
each state for both contextual and temporal splitting, is

T
p(016) = [[N(oi s, Zs)asir, s (1)
t=1
where O = {01,...,0¢,...,07} is a set of training samples,

s¢ denotes the state number at time t, and 7, represents
the transition arc number at time ¢. In addition, B, is a
mean vector at s;, X, denotes a covariance matrix at s,
and as.r,, is a transition probability. We use a diagonal
matrix as the covariance matrix. The maximum of N, is N,
and N, in this paper can be replaced by N,. However, this
splitting algorithm can use N, = 2 only.

The probability for the complete data set to which the
latent variables are introduced is

T N, N,

[T

t=1i=13=1

p(0.2/0) = Jais}h, )
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Figure 1 Flow of the Variational Bayesian SSS algorithm.

where Z = {zfj}fi’l'_’;’:f;ﬂ is the set of latent variables.

The objective function F,, is defined as a lower bound of
a marginal likelihood over all random quantities with a fixed
structure m [6]:

p(0,Z|9)p(©)
9(Z)q(©)

where g() stands for a variational posterior probability, which

Fm = / a(Z)q(©)In dzde, 3)

approximates a true posterior probability; g() becomes the
closest distribution to its true posterior probability when
Fm is maximized. An iterative procedure to find the opti-
mal variational posteriors is defined by the partial derivative
of Fm w.r.t. each g(). It is referred to as the Variational
Bayesian EM Steps.

When the ith state with the HMM parameter ©; is split
into the i)th state and the ipth state, and the parameter <}
is estimated for the current splitting, the splitting criterion
can be represented by using the objective function F,, as
follows,

AFGH = FEO,) - FP(©0), @

where n is the iteration number.

2.3 Priors

We assume that the probability of parameters can be fac-
torized as follows.

p(©) = p(Ns. No)p(a|N. No)p(ZINs)p(1|E, Ns). (5)

We also assume that the prior of @ = {a;}/v%) ai; 2
0, Z] Laij = 1 is a Dirichlet distribution, and that the

prior of {1, B} = {{u}1%. {S)1%

1} is a normal-Gamma

distribution,

2

p(alN., N,) =H ({ais}521: 60) 3‘HH af ™

i=1 i=1j=1

p(p. Z|N:)

D
. -1
| | Mik; Vok: &g O

where D is the order of parameters, pix and o are the
kth elements of p; and X;, respectively, N() denotes the
Gaussian distribution, G() represents the Gamma distribu-

#)G(o k"1 70/2, bor /2),

1]
i E z

tion, and o, Yok, £o, Mo, and bok. are prior parameters.
The definition of the Gamma distribution is G(s;n,A) =
2 ')s" ! exp(—\s), where I'() is the Gamma function.

2.4 Posteriors

We also assume that the posterior probability of parame-
ters can be factorized as follows.

() = q(Ns, Na)q(a|Ns, Na)q(E|N;)q(p|E, No).  (6)

The posterior probability can be derived from the Variational
Bayesian EM algorithm [6].

N,
9(al0, N, No) = [ Dais} ey i} ), (7)
i=1
T
$i5 = o+ Nig, Niy =D 2, 2 =< 24, >q2),
t=1
q(n. X|O, Ny)
N D
= N(pirsvin, € oik)G (00 3m:/2, bk /2 (8)
i=1k=1
T
N; = ZE:, z; =< z; >q(z),
t=1
Nioix + Eovok N
Vik = = i =& + Ni, ni =m0+ Nj,
k Nt b & =6 7 =10
N.
bik = bok + ik + 7 fOE (Bik — vok)?,

t=1 t=1

Here, <z >;(,)= fzf(z)dz is the expectation of z for f(z).
The variational posterior probability of latent variables is
also derived in the same manner as the unknown parame-
ters; Fm can be derived from these priors and posteriors.

The variational posterior probability of latent variables
and the VB objective function were also derived. The de-
tail is omitted here.

3. Increasing Mixture Components Based
on the VB Approach

3.1 Splitting mixture method

After topologies are obtained by the VB-SSS algorithm,
the number of mixture components is increased by the fol-
lowing algorithm based on the VB approach. We define the



Figure 2 Splitting each distribution into two distributions.

splitting mixture method as follows. [Splitting mixture

method]

(1) Set an initial model obtained by topology training.
M® =1 n=0.

(2) Calculate the objective function ]-'f,f‘).

(3) Iterate the following steps for each phoneme.

(a) Split each distribution into two distributions in each
state. Mt = 2M ™ (Fig. 2)

(b) Estimate posterior distributions, and calculate the
objective function Fitn), repeatedly.

(c) Stop splitting when AFZTY = ~F™isa
negative number. Otherwise, n = n + 1, and go to (a).

]_-’(':H»l)

This algorithm splits each mixture component to two distri-
butions, as in Fig. 2. In this algorithm, the number of mix-
ture components is estimated for each phoneme. It obtains
more suitable models than models with the same number of
mixture components for all phonemes.

3.2 VB approach for increasing mixture compo-

nents

In[7] and [8], the authors estimated the number of mix-
ture components for each state because their methods are
the same as those used for GMMs. On the other hand, the
VB-SSS algorithm estimates model structures by consider-
ing the transition probabilities using the forward-backward
algorithm. Therefore, our proposed method estimates the
number of mixture components with the forward-backward
algorithm for phoneme periods.

Gaussian mixture HMMs can be represented as follows.

T MSI')
p018) =[] { 3 worN(oeipy, Ba1) p @vriyrs (9)
t=1 k=1

(n)
. . M .
where s; denotes the state index at time ¢, {wix},_} is a

set of mixture weights for state 7, p, is a mean vector, and
¥, is a covariance matrix. In addition, 7 is an arc index at
time ¢, {a”}

The priors and posteriors for transition probabilities, mean

~, is a set of transition probabilities.

vectors, and precision matrices can be defined just as those of
the VB-SSS algorithm. p(a|N, Na) = 17, P({ai; 1,5 do)

is for transition probabilities. and p(u.S|N,, {M;}N:

HP | H,=1 (mirt; vor, €5 oikt)G (o ,k,.no/2,601/2 is
for mean vectors and precision matrices. For mixture
weights, a Dirichlet distribution can be used.

p(w| N, {M}, =HD<{wik}£21:po>«

where po is a prior parameter. The posterior probabilities for
these probabilities and the VB objective function, including
mixture components, can be derived in the same manner as
these in the VB-SSS algorithm.

For recognition, posterior predictive probability is used for
the Bayesian approach.

T
p(zim,0) = H/p(ztles,s,+,,m,0)
t=1

X p(@§15¢+1|mxo)deﬂt-€r+1' (10)

Here, ,ZT} is a set of test data, and
that is,

transitions, and mixture components in

z = {x1,...
m represents a structure indicator, the num-
ber of states,
this work. The true posterior probability p(©;;|m,0O)
is approximated by the variational posterior probability
a({ais 12 1m) TTRZ, awin )i Im)a(pei, Baklm).

M;

T D
p(x|m,0) ':Hd) H (zer; vikt, okt fik),
t=1 k=1 =1

¢'J = ¢U/Z¢1] 1 Pij = Ptk/szk’

fik = Mik, Oirt = bit(§ik + 1)/ (Eik fir)-
T(-) is a Student-t distribution.
T(xe;Vik, Pik, fik)
= Ci{1 + (e — vir) (fir®ix) " (e — vax)} 304D

I((fu+D)/2)
(fikm)P/2T(fir /2)| @ik 3

Cik =

W

Here, represents a transpose.

4. Experiments

4.1 Experimental conditions

We compared our proposed method, the VB-SSS, to the
ML-SSS and the MDL-SSS algorithms [5]. For the ML-SSS,
two models with different maximum state lengths, 3 or 4,
were created. These two models are the baseline models.

For the acoustic training set, we used Japanese dia-
log speech from the ATR travel arrangement task (TRA)
database [10] uttered by 166 males. The total length of
speech was 2.1 hours.

For testing, we used dialog speech that includes 213 sen-
tences from the TRA database uttered by a different set of 17
males. For topology training, we employed the VB approach
only for the splitting and stopping criteria. Multi-class com-
posite bigram models [11] were used, and the vocabulary size
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Figure 3 Word accuracy rates by single Gaussian models.

Table 1 Word accuracy rates (%] and # of states in parentheses

for several hyperparameters.

£ =0.1 ¢0 = 1.0 ¢o = 10 $o = 100
no = 0.2 | 68.87 (766) 69.14 (764) | 68.76 (775)
no = 2.0 |72.12 (1,361) | 71.30 (1,252) | 67.73 (1,246)
=10 ¢o=10 ¢o =10 ¢o = 100
no = 0.2 | 68.87 (760) 68.92 (761) 68.87 (749)
mo = 2.0 | 72.77 (1,419) | 72.55 (1,425) | 72.17 (1,433)
o =10 ¢o0 =10 ¢o =10 $o = 100
no = 0.2| 70.01 (771) 68.60 (757) | 69.09 (780)
no = 2.0 | 71.30 (1,315) | 72.06 (1,358) | 66.00 (1,211)

was 5,000. The sampling frequency was 16 kHz, the frame
length was 20 ms, and the frame shift was 10 ms. We used
12-order MFCC, AMFCC, and A log power as feature pa-
rameters. In addition, cepstrum mean subtraction was ap-
plied to each utterance. We used 26 kinds of phonemes and
one silence. Three states were used as the initial model for
each phoneme, and one Gaussian distribution for each state
was used during topology training. A silence model with
three states was built separately from the phoneme models,
and to increase the number of mixture components with the
VB approach, the number of Gaussians for the silence model
was determined by employing the VB approach. In these
experiments, we used ¢o = 1.0, o = 1.0, 9o = 2.0 for the
prior parameters of the VB-SSS. vgx and box were set from
the element values of the mean vectors and the covariance
matrices.

4.2 Evaluation for topology training

Figure 3 shows the results by using the single Gaussian
models. The performance of the MDL-SSS was again worse
than the baseline, ML-SSS, due to the small amount of train-
ing data. On the other hand, with about 60% of the ML-SSS
states, the VB-SSS achieved a comparable recognition rate.

Next, we analyzed the dependencies of the prior hyperpa-
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Figure 4 Word accuracy rates by Gaussian mixture models.

rameters. Table 1 shows word accuracy rates and the num-
ber of states of several prior parameters for the 5k-CSR task,
with the trend of results for segmented phoneme recognition
being almost the same. The fluctuation of performance is
small when ¢o is changed under almost the optimal values,
€0 = 1.0 and o = 2.0. Also, ¢ is a hyperparameter of tran-
sition probabilities. Because transition probabilities do not
have much effect on recognition performance, the influence
of ¢o is smaller than the other parameters.

4.3 Evaluation of mixture splitting

Figure 4 shows the results by using the splitting mixture
method. Furthermore, Table 2 shows the average number
of mixture components, the total number of mixture com-
ponents, and word accuracy rate for the best model of the
baseline and the models by using the VB approach with sev-
eral values of the prior parameter, po. Posterior predictive
probabilities defined by Eq. (10) are used for decoding by
Bayesian approach, showing that the VB approach obtained
almost the same performance with a 15%-smaller number
of Gaussians than that obtained by using the ML based
method. These results indicate that recognition performance
is dependent on po. This posterior parameter is updated by
pik = po + Nik. The effectiveness of po is dependent on the
number of samples. N,x; the larger the number of samples,
the smaller the effect. Furthermore. the amount of training
data in these experiments is too small for use as conventional
training data.

In addition. we evaluated four combinations of topology
training methods and mixture selection methods. This ex-



Table 2 The average number of mixture components per state,

the total number of mixture components, and word ac-

curacy rate
#mixtures
Po /state | #mixtures | WA[%]
ML-SSS
+ manual
mix selection .
(1,400 states) | — 8 11,200 | 76.56
VB-SSS 0.001 1.87 2,652 | 74.23
+ VB mix |[0.01 6.74 9,564 | 76.77
selection 0.1 9.53 13,520 | 75.69
(1,419 states) | 1.0 10.19 14,460 | 75.69

periment can show that criteria both for topology training
and mixture selection should be consistent. For topology
training, we can select either the ML-SSS or the VB-SSS,
while for mixture selection, we can use the ML-based man-
ual selection or the VB-based method. The decoding method
is dependent on the parameter estimation method, and for
ML-based manual selection, it is the usual ML-based decod-
ing (ML decoding) method. For models trained by VB-based
mixture selection, posterior predictive probabilities are used
for decoding. This is called “PPP decoding” for short in
this section. Therefore, there are four combinations as listed
below.

(1) ML-SSS + manual mixture selection + ML decod-
ing

(2) VB-SSS + VB mixture selection + PPP decoding

(3) ML-SSS + VB mixture selection + PPP decoding

(4) VB-SSS + manual mixture selection + ML decoding

In both methods (1) and (2), the criteria for both topology
training and mixture selection are the same, and their results
are the same as those in Fig. 4 and Table 2.

Figure 5 shows word accuracy rates achieved by these four
combinations. The VB approach both for topology train-
ing and mixture selection gave the best result among these
combined methods.

5. Conclusion

We proposed using the Variational Bayesian approach to
automatically create non-uniform, context-dependent HMM
topologies. We introduced the VB approach to the SSS
algorithm to create contextual and temporal variations for
HMMs and then defined posterior probability densities and
the VB free energy as split and stop criteria. The VB-SSS
automatically achieved comparable performance with about
60% of states generated by the ML-SSS. Furthermore, we
evaluated a method for increasing the number of mixture
components, employing the VB approach. Experimental re-
sults indicated that the VB approach could obtain almost the
same performance with a 15%-smaller number of Gaussians
than that obtained by using the ML-based method.
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