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Reformulating the HMM as a Trajectory Model
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Abstract We have shown that the HMM whose state output vector includes static and dynamic feature parame-
ters can be reformulated as a trajectory model by imposing the explicit relationship between the static and dynamic
features. The derived model, referred to as “trajectory HMM,” can alleviate the limitations of HMMSs: i) constant
statistics within an HMM state and ii) independence assumption of state output probabilities. In this paper, we first
summarize the definition and the training algorithm. Then, to show that the trajectory HMM is a proper generative
model, we derive a new algorithm for sampling from the trajectory model, and show the result of an illustrative
experiment. A speech recognition experiment demonstrates the consistency between training and decoding criteria

is essential: the model should not only be traind as a trajectory model but also be used as a trajectory model in

decoding, even though the trajectory model has the same parameterization as the standard HMM.
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1. Introduction

Tractable and efficient implementations of the HMM
framework are based on assumptions: i) piece-wise constant
statistics within an HMM state and ii) independence assump-
tion of state output probabilities. To overcome these limita-
tions, alternative models have been proposed, e.g., [1]-[10].
Most of them have attempted to capture the explicit dy-
namics of speech parameter trajecotories. The use of the dy-
namic features (delta and delta-delta features) [11] can also
enhance the performance of HMM-based speech recognizers.
However, it has been thought of as an ad hoc rather than
an essential solution: the standard HMM allows inconsistent
static and dynamic features when it is used as a generative
model. On the other hand, we have shown that by imposing
the explicit relationship between static features and dynamic
features on the standard HMM, it is naturally translated into
a trajectory model, referred to as “trajectory HMM” [12].
We have also shown that the effectiveness of the trajectory
HMM in speech recognition [13] and speech synthesis [14].

In this paper, we first summarize the definition and algo-
rithms of the trajectory HMM. Then, we demonstrate that
the trajectory HMM is a proper generative model, by show-
ing an illustrative experiment with a new algorithm for sam-
pling from the trajectory model. A speech recognition exper-
iment is also conducted to demonstrates the importance of
the consistency between training and decoding criteria: not
only the model should be traind as a trajectory model but
also it should be used as a trajectory model in decoding, even
though the trajectory model has the same parameterization
as the standard HMM.

The formulation of the trajectory HMM is closely related

where ¢ = {q1.¢2, ..

HMM, speech recognition, speech synthesis, trajectory model, dynamic feature

to a technique for parameter generation from HMM [15]-[17],
in which the speech parameter sequence is determined so
as to maximize its output probability for the HMM under
the constraints between static and dynamic features. While
we derived the speech parameter generation algorithm in or-
der to construct HMM-based speech synthesizers [18] which
can synthesize speech with various voice characteristics, the
generation algorithm was also applied to speech recognition
in [19]. Interesting discussions related to the use of dynamic
features in HMMs can be found in [20], [21]. This paper also
discusses relations between the trajectory HMM and other
techniques.

Section 2
describes the definition of the trajectory model. Section 3

The rest of the paper organized as follows.

shows the relation to the HMM-based speech synthesis ap-
proach. Section 4 summarizes the training algorithm. A
sampling algorithm is derived in Section 5. In Section 6, the
result of a speech recogniton experiment shows the impor-
tance of consistency between training and decoding. Con-
cluding remarks and future plans are given in the final sec-
tion.

2. Refomulating HMM

The output probability of a speech parameter vector se-

quence o = [oI,oI‘...‘o;]T for the standard HMM is
given by
Plo| X)) =) Plo|g.NP(g|N), )
all g

.,qr} is a state sequence. In most
of speech recognition systems, the speech parameter vec-
tor o; is assumed to consist of the static feature vector

c: = [ee(1),ee(2), ..., ce(M)]T (e.g., cepstral coefficients),



and dynamic feature vectors Acy, A?c, (e.g., delta and delta-
delta cepstral coefficients), that is o; = [c;r, Ac] Azc;r]T.

The dynamic features calculated by

L
T @
T=—L
L
Azcg = Z ’U.)(z)(T)CH.f, (3)
r=—L

correspond to the first and second time-derivative of the
static feature ¢;, respectively, where {w(")(r)}fz_L are the
coefficients for calculating the n-th dynamic feature and usu-
ally L is around from 1 to 3. Conditions (2) and (3) can be
arranged in a matrix form:

o= We, 4)

T . .
where ¢ = [CI, cl,. .. ,c;] , W is a sparse matrix given by

W = [wi,wa,...,wr]" & Inxm (5)
wy = [wﬁ"),wﬁ”,wﬁ"‘)] (6)
w™ = [0,...,0,w™(~L),...,w"™(0),...,w"(L).
N —
t—L—-1 2L+1
0,...,0]", n=012 (7
N——
T—(t+L)
and
1, 7=0
(0) - ’ 8
W) { 0, otherwise ®)

When each state output probability distribution is assumed
to be single Gaussian, P(o | g, )) is given by

T
P(o|g,)) = [[N(o: | 1y, Ba)) = N0 | 1, Zq), (9)
t=1
where p,, and 34, are the 3M x 1 mean vector and the
3M x 3M covariance matrix, respectively, associated with

g:-th state, and

T T TIT
By = [Bays Bays s gy (10)
g = diag[Xq,, oo, - Bag] - (11)

The above model is improper in the sense of statistical
modeling: it allows inconsistent static and dynamic feature
vector sequences even though they are constrained by (4). To
avoid the problem, the statistical model should be defined as
a function of ¢ because the original observation is ¢ rather
than the augmented variable o. Accordingly, P(o | q,))
should be normalized by the normalization term Kgq:

1
P(e|q.N) = —P(Kc|g,»), (12)
q
where
Kq= /P(Kc | g,A)de (13)
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Figure 1 Mean trajectory cq and covariance matrix Pgq.

By substituting (4) for (9), we can rewrite (9) as follows:

P(We|g. ) = N(WC ' l‘qazq)
= Kq-N(c|2q, Py), (14)

where €q is given by

Rqcq =74 (15)
and

Rqg=W'sS'w (16)

rq = WS u, (17)

Py = Ry' (18)

_ V(@mMT|Pg|
V (2m)3MT ||

1 _
-exp{—i (u;qupq—r;Pq'rq)}. (19)

Thus, we may redefine the standard HMM (1) as follows:

Pe| ) = Y z=Plola. )Pla] 3)
all q
=Y Pl(cla.NP(q| ), (20)
all ¢

where

P(c|q.)) = N(c| g, Pq). (21)

It is interesting to note that the mean €4 is exactly
the same as the speech parameter trajectory obtained by
a speech parameter generation technique for HMM-based
speech synthesis which will be summarized in the next sec-

tion. By assuming the parameter trajectory €q as the mean
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Figure 2 HMM-based speech synthesis system

for the spectral parameter vector sequence ¢ corresponding
to an utterance, the standard HMM can naturally be trans-
lated into a trajectory model: the state output probability of
observing the static part of the output vector changes dur-
ing a state, and is affected by statistics of neighboring states.
Note that the spectral parameter vector sequence ¢ is mod-
eled by a mixture of Gaussians whose dimensionality is TM,
and their covariances Pgq are generally full. As a result, the
trajectory HMM can alleviate the dificiency of the standard
HMM. It is also noted that the prametrization of the trajec-
tory HMM is exactly the same as the standard HMM: the
number of parameters of the trajectory HMM is the same as
the standard HMM with the same topology.

Figure 1 shows an example of the mean trajectory cq and
the covariance matrix Pq. Model training conditions are the
same as those in Section 6. To obtain a state sequence g,
a concatenated model composed of phoneme models /sil/,
/a/, /i/, /d/, /a/, [sil/ was aligned to a test utterance us-
ing the modified Viterbi algorithm derived in [13]. Note that
only elements corresponding to the first coefficient of mel-
cepstrum are shown in the figure. It can be seen that not
only the mean trajectory cq varies in each state but also
the temporal correlation can be modeled by the covariance
Pg. It is also interesting to note that the mean trajectory
and the temporal covariance corresponding each monophone
model vary according to its state durations and neighoring
models (see phoneme /a/). This shows that the trajectory
model has the capability to capture the coarticulation effects

naturally.

3. Relation to HMM-based speech syn-
thesis

Figure 2 shows the block diagram of an HMM-based speech

synthesis sytem. In the training part, spectrum param-

eters are extracted from a speech database and modeled
by context-dependent phoneme HMMs. In the synthesis
part, context-dependent HMMs are concatenated according
to the text to be synthesized. Then, spectrum parameters
are generated from the HMM by using a speech-parameter-
generation algorithm [15]-[17]. Finally, the synthesis-filter
module synthesize the speech waveform using the generated
spectrum parameters®?. The attraction of this approach is
in that voice qualities of synthesized speech can easily be
changed by transforming HMM parameters. In fact, it has
been shown that we can change voice qualities of synthesized
speech by applying a speaker adaptation technique [22], a
speaker interpolation technique [23], or an eigenvoice tech-
nique [24].

In this framework, the problem of speech synthesis can be
represented by

Omax = argmax P(o | g, \) (22)
o

for a state sequence g which can be determined by state
duration models. Unfortunately, without any constraints,
P(o| g, ) is maximized when 0 = pg, that is, the speech pa-
rameter vector sequence becomes a sequence of the mean vec-
tors. To avoid this, we apply the relationship between static
and dynamic features (4) as constraints of the maximization
problem. With these constraints, maximizing P(o | q,\)
with respect to o is equivalent to that with respect to c:

Cmax = argmax P(We | q, ). (23)
c

By setting dlog P(Wemax | . X)/0¢max = 0, we obtain a
set of equations

RgcCmax = 7q, (24)

where Rq and rq are given by (16) and (17), respectively.
Since (24) coincides with (15), the generated speech param-
eter sequence c is identical with the mean trajectory €q of
the trajectory model. !

For direct solution of (24), we need O(T3M?) operations
because Rq is a TM x T'M matrix. By utilizing the special
structure of band symmetric matrix Rgq, (24) can be solved
by the Cholesky decomposition with O(TM3L?) operations.

The matrix Rq becomes a (4M L + 1)-diagonal symmetric
positive definite matrix. Thus, Rq can be decomposed by
the Cholesky decomposition:

Rq=UqUq, (25)

where Ugq is a upper (2M L + 1)-diagonal triangular matrix.
Then, the set of equations (24) can be rewritten by the fol-

lowing two set of equations:

Uggq =Tq (26)

(#£1) : We have extended the system so as to model spectrum param-
eters, fundamental frequency (F0) parameters, and durations simulta-
neously in a unified framework [18].



UqSq = g, (27)

where (26) and (27) can be solved by the forward substitu-
tion and the backward substitution, respectively. As a result,
we can compute the solution €q with O(TM3L?), which is
reduced to O(TML?) when 3, is diagonal because each of
the M-dimensions can be calculated independently™®? .

Equation (24) can also be solved by an algorithm derived
in [15]-[17], which can operate in a time-recursive manner
[26].

4. Training Algorithm

In this section, we summarize a training algorithm for the
trajectory model. It should be noted that although the model
has the same parameterization as the standard HMM, the
output probability is defined by (20) rather than by (1). Ac-
cordingly, the model parameters should be trained based on
(20).

An auxiliary function of current parameter set A and new
parameter set )’ is defined by

QA X) = Plg|e,N)log P(e,q | X). (28)
all ¢

Although it can be shown that by substituting A" which max-
imizes Q(A, ') for ), the likelihood increases unless \ is a
critical point of the likelihood, we apply the single Viterbi
path approximatiof®® because it is not tractable to evalu-
ate all possible state sequences. As a result, the problem is
broken down into the following maximization problems:

Q. = argmax P(e,q | ) (29)
q

N = arg max P(e,qmax | A (30)

It is still difficult to solve the problem of (29) by the conven-
tional Viterbi algorithm because temporal covariance matrix
Py is generally full. Thus, a modified Viterbi algorithm to
obtain a “sub-optimal” state sequence is derived in [13] based
on a time-recursive likelihood calculation and the delayed de-
cision strategy. Once we obtain a sub-optimal state sequnce,
we can solve the maximization problem of (30) as follows.

The problem is equivalent to maximizing

log P(c| q,\) = v%{MTlog(%r) — log | Rq|

+CTP;1C+T;Pq1‘q—2T;rC} (31)
with respect to

m=[ul g,y (32)

¢ == 5], (33)

where N is the total number of Gaussians. In this paper, we
refer to P(c | g, A) as “trajectory likelihood.”

(7£2) : When L = 1, and w® (i) = 0, it is reduced to O(TM) as
described in [25].
(#£3) : We can also use the n-best approximation.
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Figure 3 Convergence of the model parameters estimated from
drawn samples.

By setting dlog P(c | g,A\)/0m = 0, we obtain a set of
linear equations

SqWPW ' Sg&m = S;We (34)
for determination of m which maximizes log P(c | g, ),
where

@ = diag(¢) (35)
g = Sqgm (36)
B;! = diag(Sq9), (37)

and Sq is a 3T x 3MN matrix whose elements are 0 or
1 determined according to the state sequence q. The di-
mensionality of (34) is 3M N: although it could be tens of
thousands, it is still small enough to solve the set of linear
equations using currently available computational resources.

For maximizing log P(c | g, A) with respect to ¢, we apply
a steepest descent algorithm using the first derivative

OlogPlela.d) _ gt ying-t(wpw™

¢ T2
—Wee W + 2uchWT
+WeggqgW' —2p,5, W) (38)

because (31) is not a quadratic function of ¢.
5. Sampling from the model

In this section, we describe a new algorithm for sampling
from P(c | q, ), and show the result of an illustrative exper-
iment to demonstrate that the trajectory HMM is a proper
generative model.

We can draw sample from P(c | g,)) of (21), by sam-
pling from a Gaussian N (c | €q, Pq). However, we cannot
use a straight forward way because the dimmensionality is
high enough: TM. Thus, we derive a fast algorithm uti-
lizing the Cholesky decomposition of (25)-(27). Assuming
w= [w;r wy,... ,w;] T is an M-dimmensional i.i.d. Gaus-
sian process with mean 0 and variance 1, we may obtain a
sample = [zrz;— . ,m;] T by solving the following set

of equatoins:
Ugr =g, +w, (39)

[we(1),we(2), ..., we(M)]T and x =

where w; =



[z:(1). 2:(2), ..., z:(M)]T. We can easily confirm that
2q = E[x] (40)

Py =Elz—¢g|[z—2q]" (41)
The total computational complexity to draw a sample for
given pg and g is O(TM3L?) including that of the
Cholesky decompositon. It can be reduced to O(TML?)
when X, is diagonal.

To demonstrate that the model P(c | q, ) of (21) is a
proper generative model, we train model parameters using
drawn samples from a given model, and confirm that the es-
timated model converges to the orignal model, by measuring
the KL divergence between the original and the estimated.
Figure 3 shows the result of the experiment. For the simplic-
ity, we used a single-sate model. It is shown that as the num-
ber of drawn sample increases, the KL divergence decreases.
On the other hand, the model trained by the algorithm for
the standard HMM does not converges to the original.

6. consistency between training and de-
coding

In [13], we have shown that recognition error reduction over
the standard HMM can be achieved by the trajectory HMM.
In this section, we show the importance of the consistency
between training and decoding, by combining additional ex-
perimental results with the results of [13].

Table 1 shows the phoneme recognition error rates for
combinations of training and decoding criteria. In the ta-
ble, “HMM” and “trajectory” denote training/decoding al-
gorithms based on (9) and (21), respectively. To obtain
recognition result for the trajectory HMM, we adopted a n-
best rescoring strategy: n-best list generated by the standard
baseline HMM was rescored by using the modified Viterbi al-
gorithm of [13].

When 100-best list was used, (a) in the table, it is seen that
(trajectory-training + trajectory-decoding) achieved 8.6% of
error reduction. Discrepant training and decoding crite-
ria: (HMM-training + trajectory-decoding) and (trajectory-
training + HMM-decoding) did not work. Especially, the
result for (trajectory-training + HMM-decoding) was supris-
ingly bad. These results indicate the importance of the con-
sistency between training and decoding criteria.

When 100-best plus reference (correct phoneme string) list
was used (b) in the table, we achieved about 40% of error
reduction. This suggests that the decoder designed based on
the trajectory likekihood could be further imporoved.

We also have seen the importance of the consistency be-
tween training and generation criteria in speech synthesis
application in [14]. Since we have not implemented

7. Discussions

The trajectory-HMM is related to the recognition method
proposed in [19], [27], which uses the trajectory synthesized
by parameter generation algorithm with sliding window

Table 1 Recognition error rates for combinations of train-
ing/decoding criteria. (a) 100-best rescoring, (b) (100-
best + reference) rescoring

Training HMM HMM trajectory trajectory

Decoding HMM trajectory HMM trajectory
Error rate (%) | 19.7 19.5 () 72.1 18.0 ()
rel. imp. (%) ref 1.0 —266.0 8.6
Error rate (%) | 15.3 (® 9.0 (®)
rel. imp. (%) ref 41.1

[26[*, as mean vector sequence. Compared with this
method, the trajectory-HMM does not require additional pa-
rameters to represent variances between training data and
mean trajectories.

A lot of techniques for modeling of the inverse covari-
ance (precision) matrices to capture intra-frame correlation
efficiently in large vocaburary continuous speech recogni-
tion system have been proposed. Models that have been
successfully applied include Semi-Tied Covariance matri-
ces (STC) [28],[29], Extended Maximum Likelihood Linear
Transform (EMLLT) (30], and Subspace for Precision And
Mean (SPAM) [30]. The precision matrix models mentioned
above can be described within a generic framework of basis
superposition [31]. Proposed trajectory-HMM can be viewed
as a basis superposition framework for temporal precision
matrices. The MT x MT precision matrix Rq is a weighted
sum of DMT rank-1 symmetric matrices. This form is the
same as an EMLLT for temporal precision matrix Rq. Both
the basis and the diagonal matrices can be estimated in the
general EMLLT framework. However, the basis matrix in
the trajectory-HMM is a window coefficient matrix W given
by Eq. (5). In addition, the diagonal matrix X4 is given
by transforming ¢ by Gaussian distribution sequence matrix
Sq (Eq. (37)). Thus, temporal correlation can be captured
efficiently without increasing the model parameters com-
pared with the HMM. Furthermore, trajectory-HMM can
be viewed as a SPAM model because mean vector is also
constrained with in a subspace.

One interesting relationship between the basis superposi-
tion framework and Product-of-Gaussian (PoG) framework
[32] has been shown [31]. The basis superposition is an ex-
ample of a Product of Experts (PoE) system. Because the
trajectory-HMM is an example of the basis superposition for
the temporal precision matrix, it can also be viewed as the

PoE system. Similar discussions can be found in [20], [21].
8. Conclusion

"This paper described the definition and algorithms for
the trajectory HMM. In the trajectory HMM framework,
the standard HMM is naturally translated into a trajectory
model by imposing the explicit relationship between static

(1£4) ! This algorithm can be viewed as a Kalman filtering for HMM

mean sequence.



and dynamic features. We showed how it works as a trajec-
tory model, and give an illustrative example with a new algo-
rithm for sampling from the trajectory model. Although the
parametrization of the trajectory model is the same as the
standard HMM, it works quite differently. A speech recogni-
tion experiment demonstrated the importance of the consis-
tency between training and decoding criteria. The relation
to other techniques is also discussed.

Although,we used n-best rescoring strategy in the recog-
nition experiment, it is expected that by decoding with the
“trajectory likelihood,” the recognition performance could
be further improved. Therefore, our future work includes the
implementation of a trajectory-based decoder for LVCSR.
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