
Improving User Feedback Using Generalizations of Reinforcement Learning in
Spoken Dialogue Systems

Matthias Denecke, Kohji Dohsaka

NTT Communication Sciences Laboratories, NTT Corporation
2-4 Hikaridai, Seika-cho, Souraku-gun, Kyoto, 619-0237, Japan,

{denecke,dohsaka }@atom.brl.ntt.co.jp

Abstract In spoken dialogue systems, the design of efficient and user friendly dialogue strategies is an important
problem. In the past, machine learning approaches using reinforcement learning have been proposed. Using rein-
forcement learning to optimize dialogue strategies has strong appeal as a dialogue system can be optimized using
qualitative user feedback only. However, the collection of the necessary data is costly since the learning process
is data-intensive. For these reasons, learning methods that make efficient use of training data are desirable. In this
paper, we describe two reinforcement learning techniques that find approximative solutions, and can therefore learn
more efficiently. We optimize a spoken dialogue system using both methods and compare the user feedback for the
optimized system. Both methods improve the user feedback compared to the unoptimized system.

対話システムにおける強化学習の一般化手法を用いたユーザフィードバックの改善

Matthias Denecke堂坂浩二

日本電信電話 (株), NTTコミュニケーション科学基礎研究所
〒 619-0237京都府相楽郡精華町光台 2-4
{denecke,dohsaka }@atom.brl.ntt.co.jp

あらまし 対話システムにおいて,効率的でユーザに使いやすい対話戦略のデザインは重要な問題である.従
来より強化学習を用いた機械学習によるアプローチが提案されている. 強化学習を用いた対話戦略の最適化
は,ユーザからの定性的なフィードバックだけを用いて対話システムの最適化が行えるという特徴を持つ.し
かし,学習のために大量のデータが必要なため,データ収集のコストが大きい. このため,訓練データを効率
的に用いるような学習方法が望ましい. 本稿では,近似解を見つけ,効率的に学習を行うことのできるような
2つの強化学習の手法を提案する.この 2つの手法を用いて対話システムの最適化を行い,そのシステムへの
ユーザのフィードバックを比較した.どちらの手法も最適化を行わなかったシステムに比べてユーザのフィー
ドバックを改善することができた.

1. Introduction

The responsibility of a dialogue manager includes to select
appropriate actions that lead the users to their intended com-
municative goals. This is not a trivial task due to the presence
of speech recognition errors and out-of-domain utterances
from the users. For this reason, learning to choose ”right”
actions from past experience is desirable. Learning in spo-
ken dialogue systems is often formulated as the optimization
of a Markov decision process in which the reward is given by
positive or negative user experience. Reinforcement learning
is used to carry out the optimization.

The formulation of dialogue management as a Markov de-

cision process has been proposed by Levin and Pieraccini [1].
The optimization of the decision process using reinforcement
learning has been previously investigated in Walker et al [2]
and Singh et al [3], among others. In these approaches, feed-
back from users of an initial system is used to improve the
dialogue policy. In order to come up with a working system
for data collection, the initial dialogue policy has been hand-
crafted, leaving the ”difficult” decisions to be discovered to
the learning algorithm. While users interact with the initial
system, the policy state space is explored. Due to the initial
hand crafted strategy, the actions of the initial system are sen-
sible, yet not necessarily optimal. At the end of the dialogue,

研究会temp
テキストボックス
社団法人 情報処理学会　研究報告
IPSJ SIG Technical Report

研究会temp
テキストボックス
2005／2／5

研究会temp
テキストボックス
2005－SLP－55　(16)

研究会temp
テキストボックス
－89－

the users provide feedback of -1, 0 or 1, depending on the
quality of the dialogue. After data have been collected from
the users, the transition probabilities are learned by applying
a standard value iteration algorithm.

A problem in this approach is that the size of the search
space is large compared to the amount of data that can real-
istically be collected from users. To address this problem,
Goddeau and Pineau [4] use many-to-one mappings from
states and actions to backup states and actions in order to
reduce the size of the search space.

Williams and Young [5] describe a method to bootstrap
this initial dialogue strategy from a small corpus using su-
pervised learning methods. Roy et al [6] model the dialogue
using a Partially Observable Markov Decision Process.

Due to the scarcity of the training data, approximate so-
lutions, as are standard in the reinforcement learning com-
munity, have a strong appeal. In this paper, we describe two
methods to learn dialogue policies that reduce the size of the
original problem.

2. Reinforcement Learning for Dialogue
Policies

2.1. Markov Decision Processes

A Markov decision process (MDP for short) is defined by a
tuple 〈S, A, P, R〉 whereS = {s1, . . . , sn} is a finite set of
states,A = {a1, . . . , am} is a finite set of actions ,P (s′|s, a)
is the transition model representing the probability of making
a transition to states′ when taking actiona in states, and
R(s, a, s′) is the reward for taking the transition from states

to states′ by taking actiona. We define the expected reward
as

R(s, a) =
∑

s′∈S

P (s′|s, a)R(s, a, s′)

Reinforcement learning is the problem faced by an agent
that must learn policies through trial and error interaction
with its environment. The agent bases its decision at timet

on an estimation of theaction value functionQt(s, a) (value
function for short) which estimates ”how good” it is to select
actiona in states. Information on the success (or absence
thereof) of the actions taken is used to changeQt(s, a). This
is done in such a way that the value function of successful
state-action combinations converges to higher values than the
value function of unsuccessful ones.

Every MDP has a optimal policyπ∗ which maximizes the
expected discounted return of every state. There are several
ways to discover the optimal policy. The exact Q values for
all state-action pairs can be found by solving the linear sys-
tem of Bellman equations:

Q(s, a) = R(s, a) + γ
∑

s′
P (s′|s, a)Q(s′, π(s′)) (1)

The Bellman equations can be solved byvalue iteration
(Kaelbling et al. [7]). Value iteration repeatedly updates the
value function according to

Qt+1(s, a) ← R(s, a) + λ
∑

s′
P (s′ | s, a)max

a′
Qt(s′, a′)

(2)
whereP (s′ | s, a) andR(s, a) are the estimated transition
and reward models, respectively. It can be shown that the re-
peated application of equation (2) converges towards a value
functionQ∗ and that the policy

π∗(s) = arg maxaQ∗(s, a) (3)

is optimal within a small error bound.
Alternatively to value iteration, the optimal solution can

be found bypolicy iteration ([8]). This is done in two al-
ternating steps. In the first step,value determination, the
value function is determined for a given policyπt according
to equation (1).Policy improvementdefines the next policy
as

πt+1(s) = arg maxaQt(s, a) (4)

The problem of learning dialogue policies from observed
interactions using randomly selected actions is characterized
as anoff-line, off-policylearning problem. It is off-line as the
learning takes place after the interaction completes. It is off-
policy as the exploration of the state-action space does not
follow a policy to be improved.

3. Our Approach

3.1. Problem

Reinforcement learning works because feedback of the user
at the end of the dialogue is re-distributed over the actions
taken during the dialogue. It turns out that for many appli-
cations the state and action space is too large relative to the
amount of available feedback for the action value function to
converge toward something useful.

In many tasks, most states encountered will not have been
experienced during training. In others, as the search space
increases, more data is needed to learn appropriateQ value
functions as the Bellman update uses a weighted average to
determine the value backup. This can be illustrated by con-
sidering the value functionQ.

We recall that the result of the training process is an es-
timate of the value of applying actiona in states, as repre-
sented by the value functionQ(s, a). Dialogue states not en-
countered during training have their value function equal to 0
for all actionsa. In other words, the training does not provide
any information as to what action to apply in previousy unen-
countered states. Dialogue states encountered rarely during
training have an estimate of the value function that is brit-
tle. For example, if some actions have not been seen during
training in certain states, the value function for these actions

研究会temp
テキストボックス
－90－

is 0. In other words, the training data does not provide in-
formation whether the unseeen actions in these states have a
higher value than those that have been seen.

In Singh et al [3], the problem of data sparseness was ad-
dressed in carefully selecting features that appropriately rep-
resent each dialogue state. As far as reinforcement learning
is concerned, each dialogue state is represented by a set of
characteristics relevant for dialogue management. Several di-
alogue states can potentially map to the same feature vector.
Therefore, the updates in the Markov decision process (in
which the feature vectors identify sets of dialogue states) can
be considered as non-local updates with respect to the orig-
inal dialogue states. The kind of non-locality is determined
by the selection of features and requires expert knowledge.
However, even here, the dialogue state space becomes too
large for more complex systems.

The question arises if the information in the value func-
tions can somehow be condensed to learn more efficiently.
For these reasons, there have been investigations on how to
generalize the value function based on a limited subset of
states experienced during exploration. This approach is re-
ferred to asfunction approximation, since the value function
of unknown state action pairs is approximated with the help
of previously encountered ones.

However, problems may arise due to the way in which the
estimation of the value function and reinforcement learning
interact. This is due to the fact that an update of the value
function is not local to(s, a), but typically affects the esti-
mated value of other state action pairs as well. Therefore,
there are cases in which function approximation is unstable.

3.2. Overview of proposed Solution

We collected training data using a dialogue system in which
actions were selected randomly. Analysis of the logs of these
interactions reveals that relatively few dialogue states are vis-
ited relatively often. In total, 185 states were visited. The
twelve most often visited states account for about half of the
total number of state visits. These data suggest that an ap-
proximation of the optimal solution may be sufficient pro-
vided that the visiting frequency is taken into account during
approximation.

In this paper, we investigate two approaches of approx-
imation. Both approaches take the frequency of state vis-
its into account and tend learn actions in frequently visited
states better. The first approach consists of applying Stable
Function Approximation proposed by Gordon [9] to spoken
dialogue processing. Gordon proposes to approximate the
action value function at given states by the weighted aver-
age of exact (i.e. not approximated) action value functions at
other states. He proceeds to show that under certain condi-
tions, stable convergence is guaranteed. We adapt his method
by approximating the value function for infrequently visited

states by the weighted average of similar states. This requires
a measure of similarity between states which we will intro-
duce below.

Our second approach, referred to asState Aggregation,
consists of forming state clusters of dialogue states and con-
sider the clusters states in an approximated Markov decision
process. The key to achieving good results is to form clusters
of those states that are ”similar” to each other. Two states
are similar if their representations are similar and the opti-
mal action taken in each state are the same. This leads to a
chicken-and-egg problem since in order to determine the op-
timal action to be taken in the states, we need to form state
clusters which in turn depend on the optimal action in the
states. To overcome this problem, we estimate the initialQ

value function using standard value iteration, and form clus-
ters using the initial estimation. After the approximated pro-
cess is solved, theQ values are projected back from the ap-
proximation to the original process. This is repeated until the
optimal actions in the original process do not change much.

Due to limitations of space, we do not address the problem
of adequate representations of dialogue states and actions in
this paper. A detailed description of the used representations
can be found in [10].

4. Stable Function Approximation

4.1. Overview

Gordon [9] proves stable convergence of value iteration with
function approximation for a large class of approximators
he callsaveragers. The idea of his work is that the action
value function at a given point can be approximated by the
weighted average of exact (i.e. not approximated) action
value functions at other points. Under certain conditions,
convergence is guaranteed.

4.2. Application of Stable Function Approximation to
Dialogue Processing

In what follows,s, s′, s′′ andt represent states of the Markov
decision process. Furthermore,a, a′ anda′′ represent actions
of the dialogue manager. Following Gordon [9], the appli-
cation of the standard Bellman value update operator is re-
placed with a two-step update. First, the standard Bellman
update (see equation 2) is applied for those statess that are
frequently visited:

Q′(s, a) = R(s, a) + λ
∑

s′
P (s′ | s, a)max

a′
Q(s′, a′) (5)

Subsequently, an averaging operator determines theQ values
for the remaining state action pairs(t, a):

Q′′(t, a) =
∑

s′

∑

a′
βtas′a′Q

′(s′, a′)

研究会temp
テキストボックス
－91－

If t is an exact state we setβtas′a′ = 1 for t = s and
a = a′, and 0 otherwise. Ift is an approximated state, we
setβtas′a′ = 0 for a 6= a′. For the remainingβ, we set
βtas′a = N/d(t, s′), whereN is a normalization factor so
that

∑
s′ βtas′a = 1. SubstitutingQ′(t, a) for equation 5, we

obtain for approximated statest:

Q′′(t, a) =
∑

s′
∑

a′ βtas′a′(R(s′, a′)+
λ

∑
s′′ P (s′′ | s′, a′)maxa′′ Q(s′′, a′′))

=
∑

s′ N/d(t, s′)(R(s′, a)+
λ

∑
s′′ P (s′′ | s′, a)maxa′′ Q(s′′, a′′))

wheres′ ranges over exact states only. A value backup dur-
ing value iteration becomes thenQ(t, a) ← Q′′(t, a).

The optimal actiona∗ to be applied in states is determined
according to

a∗ = arg maxa∈A(s)Qt(s, a) (6)

5. State Aggregation

5.1. Overview

The principal idea behind our second approach, referred to
asstate aggregation, is to aggregate ”similar” states in state
clusters so as to obtain a smaller decision process. We form
state clusters by requiring (i) that a certain number of fea-
ture functions for all states in the same cluster yield the same
value and (ii) that the optimal action arg maxaQ(s, a) yield
the same actiona∗ with a high probability when a state in the
cluster is visited.

Using these concepts, our approach can be summarized as
follows. We begin by estimating the transition and reward
model from the observed dialogue logs. We then perform
standard value iteration to obtain an estimate of the value
function Q. We use this value function to form clusters of
dialogue states. Using the clusters, we obtain an aggregated
Markov Decision Process in which each cluster forms a new
state. We solve the aggregated process using value iteration.
After the process is solved, we de-aggregate to obtain an es-
timate of the value function for the original process. If nec-
essary, we repeat the process.

In order to implement this approach, we need to address
two issues. First, we need to determine how the transition
and reward models are mapped from the original decision
process to the reduced decision process andvice versa. Sec-
ond, we need to determine how the clusters are formed.

5.2. Construction of the reduced Decision Process

In order to construct the reduced decision process, we
introduce an aggregation functionc : {1, . . . , n} →
{1, . . . , k}, k < n, assigning to each state one out ofk clus-
tersS1, . . . , Sk, ignoring for the moment how this function
is determined. We introduce the sampling probabilityq(s|S)
to be the probability that statesi is chosen if the system is in

clusterSj . The probabilityq(s|S) can be calculated accord-
ing to

q(si|Sj) =
P (si)∑

s∈Sj
P (s)

for si ∈ Sj (7)

whereP (s) is the probability that the system is in states. We
determine transition probabilities for the aggregated states in
terms of the sampling probability and the transition probabil-
ities of the original Markov decision process as follows

P (S′|S, a) =
∑

s∈S

∑

s′∈S′
q(s|S)P (s′|s, a) (8)

Likewise, we calculate the reward function for the aggregated
states in terms of the sampling probability and the reward
function of the original Markov process as in

R(S, a, S′) =
∑

s∈S

∑

s′∈S′
q(s|S)P (s′|s, a)R(s, a, s′) (9)

Equations (8) and (9) can be seen as approximations of the
transition probabilities, with the sampling frequency (7) serv-
ing as the weight. Using these equations, we can construct
the approximated decision process. We use standard policy
evaluation/policy improvement [8] to solve the approximated
process. After the approximated process is solved, we de-
aggregate it to obtain an approximation of the value function
of the original process as follows:

Q(s, a) = R(S, a) + γ
∑

s′
P (s′|s, a)Q(s′, π(s′)) (10)

We iterate the process until the aggregation process be-
comes stable. Since the previous iteration, the value function
may have been changed. Therefore, we need to update the
value function. We do this according to

Q(S, a) =
∑

s∈S P (s)Q(s, a)∑
s∈S P (s)

(11)

and process with equation 8.

5.3. Aggregation functions

We now turn to the question how an appropriate aggregation
function c can be found. The intuition behind state aggre-
gation is to group states that are ”similar” with respect to
the system dynamics. As outlined in the previous section,
dialogue states are represented using feature functions that
isolate aspects of the dialogue state relevant to dialogue man-
agement. Thus, any given dialogue states can be uniquely
represented as a set of constraintsf1(s) = v1, . . . , fl(s) =
vl. This is considered a cluster of size 1, since exactly one
dialogue state fulfills the given constraints. Removing con-
straints from the set leads to a larger cluster. Thus, the ap-
proach we pursue is, proceeding bottom to top, to start out
with a cluster of size 1 and perform a search to determine as

研究会temp
テキストボックス
－92－

State f1 f2 Times visited Optimal Action
1 0 0 10 1
2 0 1 1 2
3 1 0 5 1
4 1 1 1 3

Table 1: Clustering example

many constraints as possible to be removed while ensuring
that certain integrity constraints remain valid for the cluster.

We are interested in clustering dialogue states that ”behave
similarly”. Assume for a moment that the value functionQ

is known. Then, we repeatedly determine the smallest sets
of constraints such that arg maxa Q(s, a) = a∗ with prob-
ability p, for somea∗ and for all s that fulfill the remain-
ing constraints. To illustrate the approach, consider table 1,
showing an example of four states and 2 feature functions.
For p = 0.9, states 1 and 2 can be clustered since the proba-
bility that the chosen action is 1 is 10 / 11> 0.9. Forp = 0.8,
states 1 to 4 form a cluster, since action 1 is chosen 15 out of
17 times, which is larger than 0.8, but not larger than 0.9.

This process yields sets of constraints that determine the
clusters. Note that ifp = 1, the algorithm degenerates to the
standardQ learning algorithm, and the same solution is ob-
tained. Since we do not knowQ a priori, we use the standard
Q policy iteration algorithm to obtain an initial estimate for
Q.

One important aspect of the feature functions is that they
introduce the bias according to which generalization takes
place. This is because clusters are formed by imposing con-
straints on the features of the states in that cluster. The dis-
cussion in the previous sections leads to the algorithm shown
in figure 1.

do
1 LearnQt(s, a) using value iteration
2 Determine cluster function depending onp

3 Determine transition and reward models of
approximated process according to equs. (8) and (9)

4 DetermineQ(S, a) of the approximated process
using value iteration

5 De-aggregate the approximated process using
equ. (10) and assign toQt+1(s, a)

while
∑

s,a ‖Qt(s, a) - Qt+1(s, a)‖ > δ

Figure 1: Algorithm

6. Evaluation

In order to evaluate the proposed methods, we implemented
a spoken dialogue system. Using this system, we collected
dialogue logs using the random exploration strategy as well

as user feedback. We then applied the described optimiza-
tion methods to the dialogue system and collected additional
dialogue logs as well as user feedback.

6.1. Dialogue System

We implemented a Japanese bus information system. The
implemented system has 972 different dialogue states and 5
different actions.

6.2. Data Collection

Using the Japanese bus information system, we collected 500
dialogues from 50 different users. Each user had to obtain in-
formation for 10 bus trips. If the interaction with the system
exceeded a certain time limit, the dialogue was stopped and
the dialogue received the evaluation -1.

Of the 972 dialogue states, one third (or 324) were final
states, implying that their value function is 0 for all actions.
Out of those 972 states, 185 were visited during exploration.
Of those, 43 were final states. Among the remaining 142
states, there were 49 states in which, when visited, always
the same action was applied. The number of states in which
two, three, four or five different actions were applied, is 31,
33, 19 and 10, respectively. Thus, the size of the state-action
space spanned by the exploration equals231+333+419+510.

6.3. User Feedback

After training, we collected 250 dialogues each with the op-
timized systems, having users perform the same tasks under
the same conditions. None of the users of the optimized dia-
logue system participated in the data collection.

The users in the user study had to complete a question-
naire after each dialogue. The questionnaire was designed
along the lines of the Paradise evaluation framework. The
questions are shown in table 2. The answers to the first
question, ”Overall, was the interaction successful?”, were as-
signed values -2 (no), 0 (average) and 2 (yes). The answers
to all other questions were assigned integer values ranging
from -2 (disagree) to 2 (agree). Except for questions 4, 5 and
6, larger values are better. The average values of the given
answers are shown for the exploratory system (Expl), the sys-
tem optimized with stable function approximation (SFA) and
the system optimized with state aggregation (SA).

Since the answers to the first question were used as the
optimization criterion, we show the answer distribution in
more detail in table 3.

6.4. Discussion of the results

Both approximation algorithms are capable of optimizing the
underlying dialogue process. In all of the cases, users re-
spond more favorably to the optimized system.

研究会temp
テキストボックス
－93－

Question Expl SFA SA
Avg. Std. Avg. Std. Avg. Std.

1 Overall, the quality of the 0.664 1.419 1.024 1.295 0.912 1.268
dialogue was:

2 It was easy to obtain the 0.696 1.455 1.342 0.996 1.216 1.119
needed information

3 I could understand what I 1.04 1.195 1.408 0.910 1.584 0.798
was supposed to say

4 I had to speak unnaturally in -0.548 1.258 -0.612 1.340 -1.004 1.180
order to make the system
understand me

5 I was nervous while interacting -0.784 1.223 -1.112 1.197 -1.192 1.066
with the system

6 The system irritated me -0.924 1.228 -1.204 1.236 -1.18 1.085

7 I would like to use 0.548 1.335 0.916 1.167 1.008 0.961
the system again

Table 2: User feedback. Shown are the averaged answers (avg) and their standard deviation (std) for the exploratory system
(Expl), the system optimized with stable function approximation (SFA) and the system optimized with state aggregation (SA).

Answer Average
Expl SFA SA

Good 47.2 59.6 53.2
Average 38.8 32 39.2
Bad 14 8.4 7.6

Table 3: Detailed user feedback for the overal quality of
the dialogue. Shown are the answer percentage for the ex-
ploratory system (Expl), the system optimized with stable
function approximation (SFA) and the system optimized with
state aggregation (SA).

7. Summary

We described two novel methods for fast reinforcement
learning of dialogue policies. We showed that the first pro-
posed method effectively shortens the lengths of frequently
visited dialogues. This is despite the fact that the state-action
space is considerably larger than in previously reported work.
However, the optimized dialogue strategy does not do much
for infrequently visited states as these are excluded from
training.

8. References
[1] E. Levin and R. Pieraccini, “A Stochastic Model of Human

Computer Interaction for Learning Dialog Strategies,” inPro-
ceedings of Eurospeech, Rhodos, Greece, 1997.

[2] M. Walker, J. Fromer, and S. Narayanan, “Learning optimal
dialogue strategies: A case study of a spoken dialogue agent
for email,” in Proceedings of ACL/COLING 98, 1998.

[3] S. Singh, D. Litman, M. Kearns, and M. Walker, “Optimizing
Dialogue Management with Reinforcement Learning: Exper-
iments with the NJFun System,”Journal of Artificial Intelli-
gence Research, vol. 16, pp. 105–133, 2002.

[4] D. Goddeau and J. Pineau, “Fast Reinforcement Learning of
Dialog Strategies,” inIEEE Conference on Acoustics, Speech
and Signal Processing (ICASSP), Istanbul, Turkey, 2000.

[5] J. D. Williams and S. Young, “Using Wizard-of-Oz Simu-
lations to Bootstrap Reinforcement Learning Based Dialog
Management Systems,” inProceedings of the 4thSIGDIAL
Workshop on Discourse and Dialogue, 2003.

[6] N. Roy, J. Pineau, and S. Thrun, “Spoken Dialog Management
for Robots,” inProceedings of the 39th Annual Meeting of the
Association for Computational Linguistics, 2000.

[7] L. Kaelbling, M. Littman, and A. Moore, “Reinforcement
Learning: A Survey,”Journal of Artificial Intelligence Re-
search, vol. 4, pp. 237–285, 1996.

[8] R. Sutton and A. Barto,Reinforcement Learning. MIT Press,
1998.

[9] G. J. Gordon, “Stable function approximation in dynamic pro-
gramming,” inProceedings of the Twelfth International Con-
ference on Machine Learning, 1995.

[10] M. Denecke, K. Dohsaka, and M. Nakano, “Fast reinforce-
ment learning of dialogue policies using stable function
approximation,” inLecture Notes in Artificial Intelligence.
Springer, 2005.

研究会temp
テキストボックス
－94－

