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Abstract Accurate endpoint detection is important to improve the speech recognition capability. This paper proposes a
novel endpoint detection method which combines energy-based and likelihood ratio-based voice activity detection (VAD)
criteria, where the likelihood ratio is calculated with speech/non-speech Gaussian mixture models (GMMs). Moreover, the
proposed method introduces the discriminative feature extraction method (DFE) in order to improve the speech/non-speech
classification. The DFE is used in the training of parameters required for calculating the likelihood ratio. Our experimental
evaluation showed that the proposed method reduces the recognition error rate compared to a conventional energy-based
technique.

Keyword Endpoint detection, VAD, DFE, GMM

1. INTRODUCTION

Endpoint (start- and end-of-speech) detection, which is a
method to detect speech segments from input signals, is
required in various speech applications such as automatic
speech recognition (ASR) and speech coding. However,
conventional endpoint detection methods are not robust in
noisy places such as car cabins. One of the main reasons
for the poor robustness is the inability to detect the

endpoints in noisy places. In order to expand the speech
applications even to noisy places where people carry out
their daily activities, it is important to realize the robust
endpoint detection. Moreover, the accurate endpoint
detection reduces the response time and the computation
cost of ASR systems. This is because only useful speech
frames are passed to a back-end decoder.

In endpoint detection, energy level observation is a
widely used method [1]. It is popular because the method
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is simple and performs well as long as environments are
quiet. However, the energy-based method is not robust in
low SNR environments [2]. In order to improve the
robustness of energy-based endpointer which is the
function to detect the start-of-speech (SOS) and the
end-of-speech (EOS). some methods are reported. They
are the combinations of spectrum-based methods such as
entropy [3] and cepstral methods [4, 5]. Also in [4], linear
discriminant (LDA) is applied to the
mel-frequency cepstrum coefficient (MFCC) in order to
extract discriminative features for speech/non-speech
classification.

- We propose a novel endpoint detection method which is
robust even in noisy places. The method combines the
energy-based and likelihood ratio-based [6] criteria for
Voice Activity Detection (VAD). Moreover, the proposed
method introduces the discriminative feature extraction
method (DFE) [7] in order to extract discriminative
féatufes for speech/non-speech classification. The DFE is
used in the training of parameters required for calculating
the . likelihood ratio. The main advantage of the DFE
i'r;iitgduction is that DFE optimizes all the parameters of
both the front-end feature extractor and the back-end
classifier in a unified framework with a minimum
classification error (MCE) criterion [8].

The rest of this paper is organized as follows. Section 2
describes the conventional energy-based and
likelihood-based voice activity detection (VAD) methods.
In Section 3, the framework of the proposed endpointer
and the parameter optimization by the DFE are described.
Section 4 shows our experimental evaluations. Finally,
conclusion is in Section 5.

analysis

2. VOICE ACTIVITY DETECTION

2.1. Energy-based criterion

The energy is widely used as a feature for the VAD. In
addition to its simplicity, the energy has achieved
adequate performance in clean environments. In the
energy-based VAD, if a log-energy exceeds a threshold,
t};;re:jframe is classified as speech. otherwise it is classified
on-speech. The speech threshold needs to be adjusted
based on the level of the input signal. In [1, 2], adaptive
thfr_e:s}‘lold techniques are proposed. The noise level
E,..(t) is estimated during non-speech segments using
the following first recursive order system:

E .()=AE (t-1)+(1-1E(), (1)

where E(t) is the log-energy of frame ¢ and A is the
fofgetting factor. The speech threshold T.(t) is then set
according to the following equation:

T,=E,, O+, ()

w;hqze 7. 1s a fixed value to determine the threshold. If
E(t)>T,(t), the update in Eq. (1) stops. If E(t)<E,, .(1),
the update restarts.

2.2. Likelihood-based criterion

The GMMs have been widely used as classifiers in
various fields such as speaker recognition [9, 10] and
audio classification [I1]. By training one GMM with
speech data and another GMM with non-speech data, it is
possible to handle the frame-based speech/non-speech
classification [6]. The log-likelihood ratio of speech and
non-speech GMMs are calculated as follows:

L) =g (y(1: M) - g, (y(1); A) , 3)

where g, and g, represent the log-likelihood of the
non-speech and speech GMM respectively, y(t)
represents a feature vector for frame ¢ and A represents
the parameter set of both speech and non-speech GMMs.
These parameters are trained based on the maximum
likelihood estimate (MLE) criterion with the expectation
maximization (EM) algorithm. If L(f) exceeds a speech
threshold, the frame is classified as speech, otherwise it is
classified as non-speech.

3. PROPOSED ENDPOINT DETECTION
3.1. Framework of proposed endpointer

3.1.1 Energy calculation
The proposed endpointer utilizes both the energy-based
and the likelihood ratio-based criteria for the VAD. In
order to improve robustness to noisy environments, the
spectral subtraction (SS) is used as a pre-processing step.
The noise spectrum is estimated using the quantile based
noise estimation (QBNE) technique [12], where the
median quantile of each PSD component within
pre-determined time window is regarded as an estimated
noise component. The QBNE does not need the
information of voice activity, therefore it is suitable to
the noise estimator for the endpointer.

An input signal is framed using a hamming window and
the PSD of each frame is calculated. QBNE-SS is then
applied as follows:

S(k.t) = max (X (k,t)—aN(k,1), BX(k, 1)}, (4)

where X (k,f) represents the k-th PSD of the noisy signal
at frame ¢, N(k,t) represents the k-th PSD of the noise
estimated by the QBNE and S(k.1) represents the k-th
PSD of an enhanced input signal. The parameters a and
B control the subtraction and flooring value. The
log-energy of the frame ¢ is calculated by the following
equation:

Ky |
E(t)=log > S(k.1). (5)

K=K,

where K, and K, represent the lowest and highest
frequency components which are used to calculate the
log-energy, respectively.

3.1.2 Likelihood ratio calculation
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For the feature vector of the GMMs, a log mel-filterbank
energy is utilized. In order to extract the difference of
time-variation like [13], a corresponding delta is
concatenated to the log mel-filterbank energy. The first
form of the feature vector x(f) is represented as follows:

x() =[x, () xy .80 A, 0O, (6)

where N represents the number of mel-filterbanks,
x,(t) represents the n-th log mel-filterbank energy and
A, (1) represents the corresponding delta. The static part
x,(t) of the feature vector x(r) changes with the level
of the input signal. To extract only the characteristics
related to the spectral shape, the feature vector x(¢) is
normalized by subtracting the mean of each frame as
follows:

%, (0)=x, () - m(r). 7
where.
m(r)ﬁgx,,(r) . (8)

The normalized feature vector X(f) is represented as
follows:

X =[x @) X ), A0 A0 (©9)

The normalization is applied after calculating the delta
for each frame. After the normalization. X(r) is projected
to a lower feature vector y(z) for decorrelation and for
the reduction of computational cost. The projection is
represented by the following equation:

y()=Px(1) (10)

where P is an MX2N projection matrix which is
obtained using the principal component analysis (PCA).
After the extraction of the final form of the feature vector
y(t) . the log-likelihood ratio of speech/non-speech is
calculated as in Eq. (3).

3.1.3 Finite-state automaton
In the proposed endpointer, a frame is judged as speech
only when it satisfies the following condition:

Et)>T,(1) & L(1)>T,(1), (an

where 7.(1) and T,(r) represent the speech threshold for
the energy and the likelihood ratio, respectively. This
combination makes it possible to utilize both energy and
spectral information for the VAD. As for the threshold of
the likelihood ratio. it can be fixed to pre-determined
value. In our preliminary experiments, however. the
adaptive threshold showed better performance for the
speech/non-speech classification especially in noisy

conditions compared to fixed one. Therefore, in this paper,

both thresholds are updated adaptively based on the
method described in Section 2.1.
After the VAD. a finite-state automaton [4] decides the

start-of-speech (SOS) and end-of-speech (EOS) points.
The automaton is driven based on the frame-based
classification. Some decision rules related to time
constraint are used to decide both SOS and EOS.

3.2. Discriminative feature extraction
In order to calculate the likelihood ratio, it is necessary to
train the parameters: the elements of the projection matrix
and .the means. variances, and mixture weights of the
speech/non-speech  GMMs. The projection matrix is
obtained using the PCA. The GMMs are trained by the
EM algorithm. These techniques are not based on a
criterion  which minimizes the speech/non-speech
classification errors. Therefore, we introduce the
discriminative feature extraction method (DFE) [7] in
order to optimize the parameters of both the projection
matrix and the GMMs. The DFE is based on the minimum
classification error/generalized probabilistic descent
(MCE/GPD) method [8] and adjusts a feature extractor as
well as a classifier in a unified framework. It was
reported as an effective technique for GMM-based
speaker recognition systems [9, 10].

In the proposed technique, the frame-based
misclassification measure of the likelihood ratio is
defined as follows:

d=-g,;(y(t):A) + g, (y(t):A) , (12)
where,

Y(eC, and i, je[0,1]. (13)

C, represents the two classes ( C, :non-speech or
C, :speech). If the frame is classified correctly, d
becomes negative. From the misclassification measure,

the loss function of DFE is defined as follows:

l=———1—, (14)
I +exp(-ad)

where 7 represents a positive parameter which controls
the slope of the sigmoid function. The loss function
becomes close to 1 in the case of miss-classification,
otherwise it becomes close to 0. All adjustable parameters
of the projection matrix and the speech/non-speech
GMMs are defined as ®. In order to minimize the loss
function / in Eq. (14), the parameter set ® is updated
based on the MCE/GPD training rule:

Ot +1]=D[1] - £,V I(X(t): D[1]) , (15)

where £ represents the step size parameter which
decreases as the number of iterations increases. Parameter
re-estimation is applied for every frame with training data
until the parameters converge.

In the adjustment process. the variances and weights of
the GMMs are subject to certain constraints. They should
be positive values and the summation of the weights
should be one. To satisfy the constraints. these parameters
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afé' transformed into a parallel subspace before
adjustment. The parameters are adjusted within the
sii“b:space and then transformed inversely. The details of
the subspace technique are described in [9].

4. EXPERIMENTAL RESULTS

Three experiments were conducted in order to evaluate
the performance of different endpointers: a conventional
energy-based approach [2] enhanced by the QBNE-SS and
the proposed endpointer both without and with DFE
training. In the first experiment, the frame-based
s_;ieech/non-speech classification was measured. In the
second experiment, the differences between manually
Iél}gled and detected endpoints were measured. The final
experiment was conducted to evaluate the endpointers in
terms of ASR performance.

4.1. Experimental setups

4°1.1. Training databases

For the training of the projection matrix and the GMMs,
§b%éch and noise datasets were prepared. The speech data
consisted of 3000 short utterances recorded in a clean
environment covering four languages: English, French,
German and Japanese. The JEIDA noise database [14] was
used as noise data. The database consisted of 18 kinds of
noises: car noise, factory noise, babble noise. etc. To
create the noisy speech data, a part of the noise data was
artificially added to the speech data, where the SNRs
were 0dB, 5dB, 20dB and clean.

4.1.2. Experimental conditions

An ‘input signal was sampled at 11025Hz and framed
using a hamming window. The length of one frame was
23ms with 8ms shift. The parameters K, and K, in Eq.
(5) were set to 130Hz and 4900Hz, respectively. The
number of mel-filterbanks N was set to 24 and the
dimension M of the final feature vector y(f)was set to
16. The number of frames for extracting the delta is set to
9:

In the DFE training, the PCA and the EM algorithm
were used to obtain the initial values of the projection
matrix and the GMMs. The PCA was calculated using the
48-dimensional feature vectors as described in Eq. (9).
These feature vectors were extracted from both speech
and noise training data. The eigenvectors with the top-16
eigenvalues of the correlation matrix calculated from the
feature vectors were chosen as the initial projection
matrix, where the cumulative proportion was 0.87. As the
ipitial classifier, 32-mixture diagonal GMMs were used.
The GMMs were trained by the EM algorithm, where the
initial mean vectors were obtained using the LBG
algorithm and the initial diagonal variances and mixture
weights were set to 1 and 1/32 respectively. The DFE
training was iterated 32 epochs with all speech and noise
training data, where the order of the samples was decided

0.95

N |
W7

8
[
E

0.8

| —&— Energy
0.75 —O0— Proposed without DFE | _|
—a— Proposed with DFE
0.7 L L . L L
0 0.05 0.1 0.15 02 0.25 03
False alarm rate

Figure 1. ROC curves for 5dB SNR car noise.
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Figure 2. ROC curves for 5dB SNR babble noise.

randomly for each epoch. 7 in Eq. (14) was set to 1.5.
g, in Eq. (15) was initially set to 1.0x10™ and was
decreased monotonically in the following epochs.

4.2. VAD accuracy

The first experiment was evaluated in terms of
frame-based speech/non-speech classification. The test
dataset used in this experiment consisted of 1000
utterances of Japanese city names. The car noise and
babble noise which were different from training data were
artificially added to the database with 5dB SNR.

Figure 1 and 2 show the receiver operating
characteristic (ROC) curves [15] for car noise and babble
noise, respectively. The parameter y, in Eq. (2) for the
energy-based technique was changed from 0.2 to 2.0 with
a step size of 0.2. In the case of the proposed techniques,
y, was set to the optimal value 0.5 and y, for the
likelihood ratio-based criterion was changed from 0.2 to
3.0 with a step size of 0.2.

Both figurcs clearly show that the proposcd techniques
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Figure 3. The histograms of the differences (# of
frames) between manually labeled and detected
endpoints: SOS (left) and EOS (right) points for 5dB
SNR car noise.

(without and with DFE) achieve good speech/non-speech
classification performance compared to the energy-based
technique. Moreover, the results obtained through DFE
training outperformed the results without DFE.

4.3. Endpoint accuracy

The second experiment evaluated in terms of
differences between manually labeled and detected
endpoints. The test dataset used in Section 4.2 was
evaluated.

Figure 3 shows the histograms of the differences for the
car noise and Table 1 lists the statistical information of
the histograms for all conditions. In this experiment, the
automatons of each endpointer were tuned to maximize
the rate of a distribution less than 10-frames difference
for training data. In Fig. 3, the histograms of the proposed
endpointers (without and with DFE) show sharper peaks
compared to the energy-based technique. This means that
the proposed endpointers achieve good performance for
SOS and EOS detections. The proposed technique with
DFE training outperformed without DFE. The differences
of each endpointer are clearly seen in Table 1 where the
results for clean and babble noise are also shown. For the
clean condition, all endpointers showed good performance
and there is no significant difference among them. For the
noisy conditions, on the other hand, the DFE training
improved the endpoint accuracy of the proposed
technique.

was

Table 1. The statistical information of the histograms,
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B Proposed with DFE
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B Energy 6.31 14.08 14.66 277
M Proposed without DFE 731 871 14.29 24.62
O Proposed with DFE 6.21 827 13.85 21.86

Recording environments

Figure 4. The sentence error rate of the ASR for the
four recording environments.

4.4. Speech recognition accuracy

The third experiment was conducted in terms of ASR
performance with the three endpointers. The Toshiba ASR
engine is developed for an embedded platform. It uses a
proprietary MFCC-based front-end and an efficient
HMM-based decoder, where the number of states is 800
and the number of Gaussians per state is 10. The acoustic
models are tuned for noisy in-car environments. A
command and control task in English was used. The
corpora for the task were recorded in four kinds of actual
environments: office, in-car idling, in-car driving in city
conditions and in-car driving in highway conditions. A
grammar of approximately 3700 unique utterances was
used for the task, representing the total number of unique
utterances in the corpora in all four environments.

Figure 4 shows the sentence error rate of the ASR for
the four recording environments. The proposed endpointer
without DFE outperformed the energy-based technique for
in-car conditions. For the idling and highway, it achieved
38.1% and 11.1% of relative error reduction rate,
respectively. The DFE training further improved the
performance of the proposed endpointer for all
environments. In particular, for the highway condition, it
achieved 11.2% of relative error reduction rate compared
to the case without DFE. These experimental results have
shown that by training the parameters of the projection

where each value represents the rate (%) of the distribution.

Conditions Clean Car 5dB Babble 5dB
The difference of the SOS EOS SOS EOS SOS EOS
number of frames <10 <30 <10 <30 <10 <30 <10 <30 <10 <30 <10 <30
Energy 96.7 99.7 91.7 99.1 59.5 79.7 60.3 78.4 57.1 77.0 56.9 76.3
Proposed without DFE 94.0 98.9 92.7 98.2 67.5 82.5 60.0 79.6 63.3 78.0 60.2 78.1
Proposed with DFE 95.9 99.1 92.5 98.0 79.6 92.2 73.8 90.6 79.5 91.6 74.3 91.6
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matrix and the GMMs with DFE, the robustness to
adverse conditions is improved in terms of the ASR
a:ccuracy as well as in terms of the VAD and endpoint
accuracies.

5. CONCLUSION

detection
proposed

robust endpoint
recogmtlon The

baper presented a
que for speech

Moreover the  proposed endpointer  introduces
discriminative feature extraction method (DFE) in order
to train the parameters for the calculation of the
log-likelihood ratio. Experimental results have shown that
DFE training improves the performance of the endpointer
in terms of SOS and EOS detections as well as the
frame-based speech/non-speech classification. In the ASR
evaluation, the proposed endpointer has shown the
improvement of the recognition accuracies in noisy
environments compared to the conventional energy-based
endpointer.
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