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Evaluating Rapid Unsupervised Speaker Adaptation Using Linear
Interpolation of HMM-Sufficient Statistics

Randy GOMEZ!, Tomoki TODA!, Hiroshi SARUWATARI', and Kiyohiro SHIKANO'

1 8916-5 Takayama-cho, Ikoma-shi, Nara, 630-0101
E-mail: frandy-g@Qis.naist.jp

Abstract Speaker adaptation techniques minimize the effect of speaker variability. It is neccessary to carry out
speaker adaptation rapidly using a minimum amount of adaptation data in real-time application. We propose to
improve the unsupervised speaker adaptation based on HMM-Sufficient Statistics using linear interpolation. This
adaptation technique uses a single arbitrary utterance to provide data for adaptation by means of selecting N-best
speakers’ Sufficient Statistics. Reducing the selected N-best speakers implies reduction in adaptation time. However.
recognition performance is degraded due to insufficiency of data needed to robustly adapt the model. We introduce
linear interpolation of the global HMM-Sufficient Statistics to offset the negative effect of reducing N-best. We
achieved a 50% reduction in adaptation time without recognition performance degradation. In our experiment, we
have reduced the adaptation time from 10 sec to 5 sec without degrading the recognition performance. Furthermore
we compared our method with Vocal Tract Length Normalization (VTLN), Maximum A Posteriori (MAP) and
Maximum Likelihood Linear Regression. Moreover, we tested the performance of our approach in office, car, crowd
and booth noise environments in 10 dB, 15 dB, 20 dB and 25 dB SNRs.
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1. INTRODUCTION

Mismatch due to different classes of age-group and
gender results in speaker variability problem which de-
grades the performance of the recognizer [1]. There are
several methods in addressing this problem, like train-
ing multiple classes of acoustic models with smaller
variance [2]. Normalization of the vocal tract such as
VTLN [3] has also been proposed. Model adaptations
such as MLLR [4] and MAP [5] for example had proven
to be very effective. Transformation and combination of
HMMs [6] is also proposed. To achieve a good recogni-
ti(;ﬁ performance, sufficient amounts of adaptation data
in several utterances with phoneme transcriptions are
needed in the case of MLLR and MAP [7), which raises
the issues like execution time and size of adaptation

dita. We have previously proposed a rapid unsupervised
speaker adaptation based on HMM-Sufficient Statistics
which requires only one adaptation utterance with 10
seconds adaptation time (7] [8]. Relevant works in rapid
adaptation includes linear combination of rank-one ma-
trices [9]and the very fast compact context-dependent
eigenvoice model adaptation[10]. In this paper we
extend the conventional unsupervised HMM Sufficient
Statistics speaker adaptation using linear interpolation
to further reduce the adaptation time. The proposed
method carries out adaptation in 5 sec which is 50%

faster than the conventional method. This paper is orga-
nized as follows. In section 2, HMM-Sufficient Statistics

adaptation is introduced. Section 3 discusses the pro-
posed method, then experimental results are presented
in section 4 comparing different adaptation techniques.

Finally, we conclude this paper in section 5.

2. Conventional HMM-Sufficient Statis-
tics Adaptation

Sufficient Statistics summarizes all the information in
a_sample about a target parameter which allows for
an observation (training data) which is huge in size
to be compactly represented in low-dimensional pa-
rameters. Model adaptation by means of HMM suf-
ficient statistics refers to the updating of the target
speaker’'s model parameters using the pre-estimated
HMM-Sufficient Statistics through N-best speaker selec-
tion. The updated model parameters are as follows :
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Fig.. 1 Block diagram of the conventional HMM-Sufficient Statis-
tics adaptation.
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“d” are the updated mixture,
mean weight, covariance matri\( and updated transition
probability respectively. L;_, . is the accumulated prob-
ability of the state occupancy from state i to state j
and S denotes the number of selected speakers. The
construction process is facilitated by a model selection
which will be explained in later sections.

Figure 1 is a block diagram of the conventional HMM-
First, the Speaker-
Independent (SI) model is trained regardless of classes
using all of the training data from the JNAS adult

Sufficient Statistics adaptation.

database consisting of 60K-utterance from 301 male and
female speakers and the JNAS Senior database with
53K-utterance from 260 male and female speakers|[1],
where each speaker is consist of 200 utterances. From
this SI model, multi-template HMM models are created
namely: Adult male, Adult female, Senior male and Se-
nior female. Consequently, four sets of HMM-Sufficient
Statistics for each speaker are created which are equiv-

alent to one-iteration of the Expectation Maximization
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Fig. 2 Block diagram of HMM-Sufficient statistics multiple mod-
els adaptation.

(E-M) training with four multi:template HMMs.
2.1 Limitations of the Conventional HMM-Sufficient
Statistics Adaptation

The recognition performance and adaptation speed of
this approach are dependent on the number of N-best
speakers, S. Experiments showed that the optimal N-
best is Soptimar = 40 which corresponds to a 10-second
adaptation time [7][11][8].

in a reduction of adaptation time with a trade-off of the

Further reducing S results

recognition performance. This is attributed to the fact
that further decreasing S results to insufficient data nec-

essary to robustly estimate the target speaker’s HMMs.

3. HMM-Sufficient Statistics Adaptation
with Linear Interpolation

To address the problem discussed in section 2.1, we in-
troduced linear interpolation using the global Sufficient
Statistics. Figure 2 shows the proposed weighting of the
global Sufficient Statistics. The proposed method makes
it possible to robustly estimate the target speaker’s
HMMs even with N-best reduced (S < Soptimat) since
the weighted global Sufficient Statistics offsets the neg-
ative effect of the removed statistical information. The

adapted HMM parameters are as follows :

S
s global
Z . L, +wLi’

adpucu _ s= 3
me - M S ’ ‘))
( LS + Lglobal)
m=1 s=1 im tm
S
ms + wmglobal
adp.. s=1 1m im
Him = : : (6)

L global

S
Yoo L+

Spectral

JESENNN —  yFcc 1 High-power

. Subtraction segmentatior
Noisy test
utterance l Speaker
identification

= Log-Likelihood | = [Speaker GMM
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updated mixture weight, means, covariance matrix and
updated transition probability using linear interpola-
tion. L3 LS . m?3 S

im>» Lijs M. U5y, are the probability of mix-

ture component occupancy, the accumulated probabil-
ity of the state occupancy, means and variance respec-
tively of the selected N-best speakers . L9ibel [ lobal

i—j
global
m

m global

, j are the probability of the mixture occu-
pancy, the accumulated probability of the state occu-
pancy , means and variance respectively which are es-
timated using all of the training data which constitute
the global Sufficient Statistics. w is the weighting factor
of the global HMM-Sufficient Statistics. In this paper,

we used the following weighting factors :

w =T, (9)

T2
W= —, 10
—L 10

where in eqn (9) we used a multiplying constant 7; and
in eqn (10), the weighting factor w is normalized by the

accumulated probability of the state occupancy, L%

1—j

3.1 Speaker and Template Selection

Speaker selection shown in Figure 2 of the proposed
adaptation method are explained below:

1) The arbitrary noisy test utterance is denoised as
shown in Figure 3 using Spectral Subtraction (SS) and
then parameterized (MFCC). To reduce the effects of the

residual noise that is present in the silence or unvoiced
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Fig. 4 Block diagram of the overall system implementation.

region of the speech utterance, the low power parts are
removed and only the MFCCs that have high energy are
retained for speaker selection.

2) We find the log-likelihood scores given the arbitrary
test utterance and the GMM speaker dependent models.
This process returns a list of log-likelihood scores among
all 561 speaker-dependent GMMs from JNAS adult and
senior database.

3) From the log-likelihood scores, only N-best speak-
ers are selected for adaptation, narrowing down the log-
likelihood list to N-speakers that are close to the test
utterance basing the log-likelihood scores.

4) From the N-speakers list, a class count is performed
for the 4 different templates (Adult male, Adult female,
Senior male, Senior female). The class counting is car-
ned out using the speaker labels (that are present in the
speaker IDs). Each of the speakers in the list will be
calssified into 4 classes mentioned above.

4) Template model is selected based on the class count.
The class that has the most counts will correspond to
the selected template model.

5) Template model, N-best HMM-Suflicient Statistics
and the weighted global HMM-Sufficients Statistics are

prepared for adaptation.
4. . Experimental Results

?Phonetically tied mixture models (PTM) are trained
by superimposing 25 dB office noise to the database [11]
in creating the multi-template models. In the acoustic
mgdeling part, office noise is superimposed to the clean
speech from the database that results to 25 dB SNR [11]
which is used in training. Figure 4 shows the overall
b}éci{ diagram of the system. In the adaptation part,
tl_lye single arbitrary noisy utterance is denoised with SS

which is used for speaker selection as outlined in sec-

Table 1 System specifications

Sampling frequency | 16 kHz
Frame length 25 ms
Frame period 10 ms
Pre-empbhasis 1-0.97z"1

Feature vectors 12-order MFCC,
12-order AMFCCs

l-order AE

HMM PTM , 2000 states
Training data Adult and Senior by JNAS
Test data Adult and Senior by JNAS
86.5
86 A: No adaptation.
~ 855 85.2 B: Conventional HMM-Suff. Stat.
X gg adaptation using Nbest=40
2845 C: Conventional HMM-Suff. Stat.
O i - N
@ 84.1 adaptation using Nbest=25
3 e
< 83.5 HMM-Suff. Stat. adaptation with
° linear smoothing using N-best=25 :
S 83 D: o=t
2 © st
825 E - .
a2 ’ .+ E-Mcount
815

Fig. 5 Average recognition performance under four noisy envi-

ronment conditions

tion 3.1. Lastly, for the actual recognition test, the SS-
denoised test utterances are superimposed with 30 dB
office noise prior to recognition to neutralize the residual
noise [11].

The test set is composed of four classes, namely: adult
male, adult female, senior male and senior female. Each
class is of 100 utterances from 23 speakers which are
taken outside of the training speakers. This sums up
to 400 total test utterances from 92 test speakers across
different genders and age-groups. Recognition experi-
ments are carried out using JULIUS with 20K-word on
Japanese newspaper dictation task from JNAS.The lan-
guage model is provided by the IPA dictation toolkit.
A summary of the basic experimental condition param-
eters used in this set-up is provided in Table 1. In the
case of the number of selected speakers S used in adapt-
ing the model parameters in equations (2)-(4), we found
S = 40 which is the optimal value Soptimar of the N-best
which is sufficient to construct a robust model from the
Sufficient Statistics. Weighting factors given in equa-
tions (9)-(10) achieved best results when 0 < 73 < 0.2
and 1 £ 75 £ 2. In particular we used 7 = 0.015 and

T = 2.
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Statistics adaptation with linear interpolation.

4.1 General Results

In Figure 5, the word accuracy (WA) when using no
adaptation is 84.1% (A). while the conventional HMM-
Sufficient Statistics adaptation is 85.4% using N-best
S =40 (B). It is apparent that when N-best is reduced
to § = 25 (C), the WA drops to 85.2%. This points
to the fact that merely reducing the selected N-best
in the conventional approach results to an insufficient
statistical data needed to robustly estimate the target
speaker’'s HMMs as mentioned in section 2.1. The pro-
posed HMM-Sufficient Statistics adaptation with linear
interpolation using the two different weighting factors
given in equations (5) and (6) has a recognition perfor-
mance of 85.9% (D) and 85.8% (E) respectively which
is approximately 0.7% higher than (C) when using the
same amount of N-best S = 25. It also outperforms the
conventional approach even when using the optimal N-
best S,ptimar = 40. It clearly shows that the negative
effect in the estimation of the HMMs caused by reducing
N-best from Sopiimar = 40 to S = 25 is compensated by
the linear interpolation of the global Sufficient Statis-
tics. As a result. execution time becomes faster owing
to fewer N-best.

4.2 Clustered speakers’ HMM-Sufficient Statis-

tics

We extended the proposed adaptation method by clus-
tering the speakers in the database shown in. In this
scheme, the individual-speaker GMMs are changed to
cluster-based GMMs. Likewise, the individual HMM-
Sufficient Statistics are changed to clustered speakers’
HMM-Sufficient Statistics.

list of clusters that are close to the target speaker. The

The N-best generates the

motivation of this appproach is to further reduce adap-

tation time by reducing N-best. Although, a further re-
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Fig. 7 Block diagram of the supervised VTLN adaptation in find-

ing for the optimum a.

duction of N-best poses a problem due to the insufficient
statistical data as dicussed in section 2.1, this problem
is minimized by combiuing 2 speakers statistical infor-
mation in each cluster and at the same time incorporate
linear interpolation. In order to keep the statistical in-
formation uniform in the N-best list, we impose that
each cluster be composed of a uniform number of speak-
ers (i.e 2 speakers per cluster) by using Minimax [12].
We also implemented K-Means clustering but the for-
mer has a better recognition performance. Figure 6 is
the plot of the WA comparing 1) individual speakers
(unclustered) with interpolation, 2) clustered speakers
with and without linear interpolation as a function of
N-best: The N-best list for the unclustered speakers are
the individual speakers itself while the latters’ N-best
list is composed of clustered speakers. It is very clear
that the proposed linear interpolation improves the per-
formance of the clustered speakers as opposed to the
clustered speakers without linear interpolation. More in-
terestingly, the clustered speakers with linear interpola-
tion using N-best =20 can achieve the same recognition
performance with that of using the individual speak-
ers (unclustered)with N-best = 25, thus a reduction in
adaptation time is further achieved.

4.3 Recognition Results Using VTLN, MAP and

MLLR

We implemented VTLN to normalize the effect of vo-
cal tract’s size of the the different speaker classess. Fig-
ure 7 shows the set-up of implementing VTLN adap-
tation.  First. we search for the optimum o that
would maximize the log-likelihood score of the train-
ing database. This particular value of « is then used to
adapt the model. The process is repeated in the case of
the testing database utterances but this time using the

VTLN-adapted modecl. Consequently an optimal « is
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:Fig. 8 Recognition Performance of the proposed method com-
pared to VTLN, MAP and MLLR.

found that maximizes the log-likehood score of the test-
_ing utterances given the VITLN-adapted model. This «
;isjthen used to check for the recognition performance of
the test data using VILN adaptation, which is to be
scompared to the proposed method. The fact that « is
V:éptimized in both the training and testing data which

siszused in evaluating the recognition performance serves

.as the upperlimit of the VILN.
,‘“_.,Figure 8 is the result for MAP, MLLR and VTLN
:gxperiments. In the abscissa, the labels 10 and 50 utter-
.;gnqes correspond to the adaptation data for MAP and
+MLLR. It is apparent that the proposed HMM-Sufficient
Statistics adaptation which uses only one arbitrary ut-
terance outperforms MAP and MLLR (10 adaptation
sutterances). However, when the adaptation utterance
_for MLLR is increased to 50 then it slightly peforms bet-
Jer than the proposed method. It is also very clear that
',.'ghe-proposed method is better than the VILN adapta-
tlon Lastly, there is a significant improvement when us-
.ing fhe proposed linear interpolation in HMM-Sufficient
Statistics adadaptation as compared the conventional

;approach without linear adaptation.
5. Conclusion

.- We have succesfully reduced the adaptation time from
{%,0 sec to 5 sec with linear interpolation of the global
yHMM-Sufficient Statistics as shown in Figure 9. The
reduction in adaptation time is achieved without de-
grading the recognition performance. In the future, we
i;\fvil_l cxperiment on different noisy environment condi-
_tions and different SNRs.
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Fig. 9 Summary of adaptation time reduction.
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