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Abstract A framework of system combination using boosting in a feature transformation is proposed. In general, 

the combination of multiple classifiers improves the classification performance of each classifier. However, there are 

two important issues in such a system combination. First, the classification performance is not necessarily improved 

if the classifiers are not complementary. Second, an inappropriate combination makes the performance worse even 

if the complementary classifiers can be obtained. In this paper, we attempt to solve how to generate and how to 

combine the complementary classifiers. Aiming at generating the complementary classifiers, the boosting was ap 

plied in HLDA based feature transformation. At the combination stage, a pattern recognition using support vector 

machine was performed, in which a pair of the likelihoods emitted by the classifiers of the first stage was used as 

a feature parameter. Experimental results showed the effectiveness of proposed method: it reduced the errors by 

74% compared to the case without any system combination. 
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Fig. 1 The training procedure of the proposed system. 
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Fig. 2 The recognition procedure of the proposed system. 
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Fig. 3 Feature vector used in the combination stage. 

(Nc denotes the number of classes.) 
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Fig. 4 Word correct for evaluation items. 
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