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Abstract

The use of human-annotated corpora is popular in developing language processing systems. For bio-text mining, for
example, there are several well-known corpora with protein mention annotations. Because of the different conventions
adopted by these corpora, one problem that is well recognized, but yet less addressed is brought about; the problem is
the heterogeneity of the corpora. The problem weakens the protein annotation consistency. In this work, we seek a way
of removing or relaxing the heterogeneity of annotations by identifying and removing the specific difference between the
annotations. Our results show that our effort to remove several disagreements between the corpora annotation is successful
in reducing the performance degradation caused by heterogeneity and incompatibility.

1. Introduction

The use of human-annotated corpora is widespread
in developing language processing systems. For bio-
text mining, for example, there are several well-
known corpora with protein mention annotations: GE-
NIA (Kim et al., 2003), PennBiolE (Mandel, 2006),
GENETAG (Tanabe et al., 2005), AImed (Bunescu
and Mooney, 2006), etc. Because of these corpora,
many automatic protein mention recognizers have
been developed, some of which report state-of-the-
art performance (Ananiadou and McNaught, 2006;
Jensen et al., 2006; Krallinger and Valencia, 2005;
Wilbur et al., 2007; Yeh et al., 2005).

One of the remaining problems that is prominently
recognized, but less studied, is regarding the compat-
ibility of different annotations made to the corpora.
The protein mention annotations to the above corpora
were made by different groups with different conven-
tions, resulting in heterogeneous and incompatible an-
notations, even though they are all supposed to repre-
sent the same task: identifying protein mentions from
biomedical texts.

The heterogeneity of the annotations raises several
problems. These include, but are not limited to:

e The performance of protein mention recognizers
based on different annotations cannot be directly
compared (Hersh, 2005).

e Although we have protein mention annotation
made to enough sentences, we can utilize only
a part of them at a time, and cannot mix hetero-
geneous annotations.

It is clear that by raising the compatibility of hetero-
geneous annotations, we can be much more efficient
in developing expensive resources.

In this work, we seek a way of removing or relaxing
the heterogeneity of annotations by identifying and re-
moving the specific differences between them. We
assumed a specific situation: one developed a pro-
tein mention recognizer based on one corpus, but soon
found he/she wants more annotations to improve the
performance. If he/she finds a way of utilizing anno-
tations from another different corpus, he/she can save
the enormous cost that it would take to perform addi-
tional manual annotations.

For exactly such a purpose, we explore the differences
between two corpora, and design a series of experi-
ments to see the effect of removing or relaxing the dif-
ference. Experimental results show that if we under-
stand where the difference is, we can raise the compat-
ibility of heterogeneous annotations by removing the
difference.

2. Data

Here are several corpora mentioned in the previous
section. Two of them are used in our work: GENIA
corpus and Almed corpus. We will give a brief intro-
duction on them focusing on the size and the annota-
tion conventions of these two corpora.

2.1. GENIA corpus

GENIA corpus version 3.02 is a collection of arti-
cles extracted from the MEDLINE database with the
MeSH terms, human, blood cell and transcription fac-
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tor. There are 2,000 abstracts and 18,545 sentences
altogether. Annotation is dependent on a small taxon-
omy of 48 classes based on a chemical classification.
Among the classes, 36 terminal classes were used to
annotate the GENIA corpus. The total number of re-
covered terms is 93,293. A simplified version called
JNLPBA corpus (Kim et al., 2004) is also used in bio-
text mining domain.

2.2. Almed corpus

Almed corpus consists of 225 MEDLINE abstracts
(1,969 sentences), and there are 4,084 protein refer-
ences in this data set. Further, there is no distinction
between genes and proteins.

3. Protein mention recognizer

Our protein mention recognition system is composed
of an maximum entropy Markov model (MEMM) n-
best tagger.

4. Preliminary experiments

This section describes a series of preliminary experi-
ments carried out to characterize the problems that we
are trying to deal with.

4.1. Experiment with AImed corpus

‘We implemented our first experiment using the AImed
corpus for both training and evaluation. We divided
the data into twenty contiguous and equally-sized sec-
tions. We then used the first fourteen sections for
training, the following four sections for testing. In
order to increase the size of the training corpus grad-
ually, we made seven training subparts. Train 1 in-
cluded the first two sections, and each time we added
two following sections into the previous training sub-
part for the succeeding training, until we finished all
seven training experiments. Table 1 shows the perfor-
mance of our system on the Almed corpus according
to exact match, left boundary match and right bound-
ary match, respectively.

4.2. Experiment with the mixed corpus

In the previous experiment, we have suggested that
we can improve the performance by increasing the
size of the training data set. We are considering to
concatenate the Almed corpus and the GENIA cor-
pus, because of the sufficient size of the GENIA cor-
pus. However, as we have mentioned earlier, the het-
erogeneity between two differently annotated corpora
will absolutely cause noise. We cannot expect to solve
such an annotation disagreement problem with some
simple or manual rules.

(%) | Criterion | Recall | Precision | F-score
Train 1 | Exact 54.41 69.27 60.94
Left 60.41 76.91 67.67
Right 59.13 75.28 66.24
Train 2 | Exact 65.90 73.09 69.31
Left 72.29 80.17 76.02
Right 69.60 77.20 73.20
Train 3 | Exact 69.22 75.28 72.12
Left 74.97 81.53 78.11
Right 72.67 79.03 75.72
Train 4 | Exact 72.80 78.73 75.65
Left 77.39 83.70 80.42
Right 75.35 81.49 78.30
Train 5 | Exact 72.67 81.05 76.63
Left 77.39 86.32 81.62
Right 75.10 83.76 79.19
Train 6 | Exact 74.97 81.87 78.27
Left 79.18 86.47 82.67
Right 77.01 84.10 80.40
Train 7 | Exact 76.12 82.09 78.99
Left 80.20 86.50 83.23
Right 78.16 84.30 81.11
Table 1: Recall, precision and F-score of the

Almed_based experiment.

In order to demonstrate the effect of the incompatibil-
ity of the two corpora, we performed a simple experi-
ment. In this experiment, we retrained our system by
using a united corpus: the Almed corpus plus the GE-
NIA corpus. We utilized all the protein subcategory
annotations in the GENIA corpus!, and treated all of
these subcategories as positive examples in the train-
ing process. The training corpus from Almed is the
same as the training corpus used in Train 7 from the
previous experiment. The evaluation is done on the
same part used for the evaluation in the earlier experi-
ment.

Table 2 shows the recall, precision and F-score of the
experimental result. We reason out that the perfor-
mance is getting worse because of the introduced het-
erogeneity between two corpora.

Criterion | Recall | Precision | F-score
Exact 55.56 61.35 58.31
Left 64.88 71.65 68.10
Right 58.88 65.02 61.80

Table 2: Recall, precision and F-score of the experi-
ment with the mixed corpus.

'We will explain it in details in the following section.
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Figure 1: Learning curve according to the F-score of
the exact match on outermost tags.

The learning curve drawn from both mentioned exper-
imental results are shown in Figure 1. We can see from
the learning curve that the learning curve is not yet
saturated until we have used up all the training por-
tions of the Almed corpus. The performance would
be further improved as the size of the training data
increases. But when we added the protein annota-
tion in the GENIA corpus to the training material, we
witnessed a drastic degradation in performance. We
assume that the degradation is caused by the hetero-
geneity of the protein annotation in the two corpora,
and we further assume that if the heterogeneity could
be eliminated, the learning curve would go back to an
increasing state.

5. Difference between GENIA and AImed

As previously mentioned, the incompatibility of het-
€rogeneous corpora causes a serious problem when
we try to use the corpora in an integrated way. Sec-
tion 4. demonstrated the problem via a series of ex-
periments. In this section, we explain some noticeable
differences of the two corpora found from documen-
tation and analysis.

Although both corpora include protein mention anno-
tation, the target task is different. GENIA annotation
centers on mining literature for general knowledge in
biology, while AImed focuses on extracting interac-
tions among individual proteins. The difference has
affected the scope of annotated proteins: GENIA con-
cerns all the protein-mentioning terms while Almed
focuses only on references of individual proteins.

The scope of proteins annotated in the GENIA
corpus is defined in the GENIA ontology (Ohta
et al., 2002); besides protein class, other classes
such as DNA, RNA, cell line and cell_-type are
also included. Further the protein class is sub-
categorized into seven sub-classes: family_or_group,
domain_or_region, molecule, substructure, subunit,
complex, etc. In other words, in GENIA, the protein
is defined as to include all the seven concepts.

In the case of Almed, the scope of the proteins anno-
tated is described by the following statement in the
Almed tagging conventions (Bunescu et al., 2005):
generic protein/gene families are not tagged, only spe-
cific names that could ultimately be traced back to spe-
cific genes in the human genome are tagged.

6. Quantifying the difference

According to the differences between the two cor-
pora, we implemented several sub-experiments so as
to eliminate or relieve the degradation caused by these
differences.

In section 5., we described the scope of the proteins of
interest in the GENIA corpus and in the Almed cor-
pus, respectively. Documentation of the two corpora
explicitly states that:

(1) the mentions of protein families are annotated in
GENIA, but not in Almed, and

(2) individual proteins (protein molecules) are anno-
tated in both corpora.

These are the clues concerning the differences be-
tween the two corpora, which we were able to find
from published documents. There are, however seven
other subcategories of protein mentions annotated in
the GENIA corpus, of which we could not find any
mention regarding the inclusion or exclusion in the
scope of proteins to be annotated in Almed. In GE-
NIA, since the annotated protein mentions are sub-
classified into seven classes, we performed a series of
experiments to confirm the two clues that we found
from documents, and to find other clues for other pro-
tein subclasses. We trained our protein mention rec-
ognizer using only the Almed corpus, and applied
it to a randomly selected part from the GENIA cor-
pus, whose size is ten percent of GENIA, and com-
pared the recognized results with the manual annota-
tion. We evaluated the result of the recognition ac-
cording to each subclass of protein at each time. In
other words, at every time, we assumed only the an-
notation instances of one subclass of proteins as the
“gold” annotation instances, and evaluated the perfor-
mance of protein mention recognition in terms of how
well it found the “gold” annotation instances. Table 3
shows the evaluated performance.

The evaluated performance based on each of Pro-
tein_family_or_group and Protein_molecule subclasses
clearly supports the documented scope of the pro-
tein annotation in GENIA and Almed: The protein
mention recognizer trained on the Almed corpus best
recognized the GENIA annotation instances of Pro-
tein_molecules among all subclasses, and the per-



Subcategory Answers / Instances | Recall | Precision | F-score
Family_or_group 114 /881 12.94 3.86 5.94
Domain_or_region 17/108 15.74 0.57 1.11
Molecule 1018 /2086 48.80 34.43 40.37
Substructure 0/17 0.00 0.00 0.00
Subunit 100/ 153 65.36 3.38 6.43
Complex 29/216 13.43 0.98 1.83
ETC 1/7 14.29 0.03 0.07
all 1279 / 3468 36.88 43.25 39.81

Table 3: Evaluated performance based on seven protein subcategories. In the last row, “all” means that we will
think the identified entity as a TP if it is tagged as any one of seven subcategories in the GENIA corpus. In the
second column, answers denote the number of correctly identified entities, and instances denote the number of

annotated entities in the GENIA corpus.

formance of recognizing Protein_family_or_group in-
stances was very poor. Also, the evaluated perfor-
mance based on other sub-classes gives us some clues
about other classes: protein mentions classified as Do-
main_or_region or ETC in GENIA might be out of
scope of annotation in Almed, considering the low
number of true positives (TPs), and so on.

In order to directly demonstrate the effect of using the
GENIA annotation of each protein subclass, we per-
formed another series of sub-experiments: we used
the GENIA annotation of each subclass together with
Almed for the training, and applied it to recognize
protein mentions in the Almed corpus. Table 4 lists
the results, which confirm our observations in Table
3. The GENIA annotation of the Protein_molecule
most positively affected the performance of recogniz-
ing the proteins tagged in Almed corpus, and recog-
nizing Protein_subunit and Protein_complex follows it.
Note that the annotation of Protein_substructure and
Protein ETC were excluded from consideration since
the number of corresponding examples is too small
(17 and 7).

7. Raising compatibility

The experimental results discussed in the last sec-
tion show that adding the GENIA protein annota-
tion of Protein_molecule, Protein_subunit and Pro-
tein_.complex separately to the training material im-
proves the precision of the protein mention recogni-
tion on the Almed corpus at a significant cost of re-
call. This observation suggests that if we use all the
three protein sub-classes as the training material, we
could improve the recall while maintaining the level of
precision. Table 5 shows our experiments on this hy-
pothesis. It shows that when we collectively used the
GENIA annotations of the three protein subclasses,
the recall was improved significantly while minimiz-

ing the decrease in precision. Compared to the exper-
imental result in Table 2, it is a significant improve-
ment. When we assume that the upper bound of the F-
score of this approach is near to 83.23% (left boundary
matching), it can be said that we reduced the incom-
patibility of the two corpora by 30%. The reduction
was obtained by understanding the difference of pro-
tein annotations made to the corpora.

8. Conclusion

We implemented several experiments in order to get
rid of the bad influence of disagreements in annota-
tion conventions. Our objective is to raise the com-
patibility of heterogeneous annotations. As we have
already known, a system cannot perform well on an-
other corpus when there are some distinctions in anno-
tation rules between the training corpus and the testing
corpus. And also as shown from our first experiment
(section 4.1.), the performance will be improved by
increasing the size of the training corpus. Thus, we
believe that we can add another more comprehensive
corpus (the GENIA corpus) into the previously used
training corpus (the Almed corpus) to increase the per-
formance. But the annotation difference must be elim-
inated in advance; otherwise, much noise will be gen-
erated and the performance will get worse rather than
get better. To verify this, we implemented an experi-
ment with a mixed training corpus (as shown in sec-
tion 4.2.). All the protein subcategories are regarded
as positive examples in the training. In this way, the
experimental results show that the performance is get-
ting worse, because of the introduced heterogeneity
between two corpora. Further, we analyzed what kind
of subcategories affects on the system performance
the most by some subcategory based experiments (as
shown in section 6. and in section 7.). We came to the
conclusion that the incompatibility of heterogeneous



Almed + Subcategory | Matching criteria | Recall | Precision | F-score
Family_or_group Exact 29.76 64.90 40.81
Left 33.33 72770 | 45.71

Right 30.40 66.30 | 41.68

Domain_or_region Exact 32.57 7798 | 4595
Left 35.38 84.71 49.91

Right 32.95 7890 | 46.49

Molecule Exact 52.75 82.60 | 64.38
Left 55.81 87.40 | 68.12

Right 55.17 86.40 | 67.34

Substructure Exact 30.14 86.45 44.70
Left 32.06 9194 | 4754

Right 30.40 87.18 | 45.08

Subunit Exact 33.72 80.49 47.52
Left 36.91 88.11 52.03

Right 34.23 81.71 48.24

Complex Exact 34.99 80.12 48.71
Left 39.21 89.77 | 54.58

Right 35.89 82.16 | 49.96

ETC Exact 33.84 87.75 | 48.85

Left 35.50 92.05 | 51.24

Right 34.10 88.41 49.22

Table 4: Recall, precision and F-score of sub-experiments based on subcategories.

Almed + Subcategory Matching criteria | Recall | Precision | F-score
Molecule + Subunit Exact 53.90 81.00 | 64.72

Left 57.85 86.95 69.48

Right 56.32 84.64 67.64

Molecule + Subunit + Complex Exact 55.17 75.52 63.76
Left 62.96 86.19 72.717

Right 58.49 80.07 67.60

Table 5: Recall, precision and F-score of experiments on three protein subcategories.

annotations can be reduced by understanding where
the difference is, and by properly considering the dif-
ference.

9. References

Sophia Ananiadou and John McNaught. 2006. Text
Mining for Biology and Biomedicine. Artech
House, London, UK.

Razvan Bunescu, Ruifang Ge, Rohit J. Kate, Edward
M. Marcotte, Raymond J. Mooney, Arun K. Ramani
and Yuk Wah Wong. 2005. Comparative Experi-
ments on Learning Information Extractors for Pro-
teins and their Interactions. Artificial Intelligence in
Medicine, 33:139-155.

Razvan Bunescu and Raymond Mooney. 2006. Sub-
sequence Kernels for Relation Extraction. in Ad-

vances in Neural Information Processing Systems,
18:171-178.

Kevin Bretonnel Cohen, Lynne Fox, Philip V. Ogren
and Lawrence Hunter. 2005. Corpus Design for
Biomedical Natural Language Processing. in Pro-
ceedings of the ACL-ISMB Workshop on Linking Bi-
ological Literature, Ontologies and Databases, De-
troit, USA.

William Hersh. 2005. Evaluation of Biomedical
Text-mining Systems: Lessons Learned from In-
formation Retrieval. Briefings in Bioinformatics,
6(4):344-356.

Lars Juhl Jensen, Jasmin Saric and Peer Bork. 2006.
Literature Mining for the Biologist: from Informa-

tion Retrieval to Biological Discovery. Nature Pub-
lish Group, 7:119-129.



Jin-Dong Kim, Tomoko Ohta, Yuka Teteisi and
Jun’ichi Tsujii. 2003. GENIA Corpus - a Semanti-
cally Annotated Corpus for Bio-textmining. Bioin-
Jformatics, 19(Suppl. 1):1180-i182.

Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsuruoka
and Yuka Tateisi. 2004. Introduction to the Bio-
Entity Recognition Task at INLPBA. in Proceed-
ings of the Joint Workshop on Natural Language
Processing in Biomedicine and its Applications,
Geneva, Switzerland.

Martin Krallinger and Alfonso Valencia. 2005.
Text-Mining and Information-Retrieval Services for
Molecular Biology. Genome Biology, 6:224-231.

Mark A. Mandel. 2006. Integrated Annotation of
Biomedical Text: Creating the PennBiolE Corpus.
in Proceedings of the Workshop on Text Mining,
Ontologies and Natural Language Processing in
Biomedicine, Manchester, UK.

Tomoko Ohta, Yuka Tateisi, Hideki Mima and
Jun’ichi Tsujii. 2002. GENIA Corpus: an Anno-
tated Research Abstract Corpus in Molecular Biol-
ogy Domain. in Proceedings of the Human Lan-
guage Technology Conference, San Diego, USA.

Lorraine Tanabe, Natalie Xie, Lynne H Thom, Wayne
Matten and W John Wilbur. 2005. GENETAG:
a Tagged Corpus for Gene/Protein Named Entity
Recognition. BMC Bioinformatics, 6(Suppl 1):S3-
S9.

John Wilbur, Larry Smith and Lorrie Tanabe. 2007.
BioCreative 2. Gene Mention Task. in Proceed-
ings of the Second BioCreative Challenge Evalua-
tion Workshop, Madrid, Spain.

Alexander Yeh, Alexander Morgan, Marc Colosimo
and Lynette Hirschman. 2005. BioCreAtIVE Task
1A: Gene Mention Finding Evaluation. BMC Bioin-
Sformatics, 6(Suppl 1):S2-S11.





