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Abstract This paper describes a simultaneous conversion technique of duration and spectrum based on a sta-
tistical model including time-sequence matching. The conventional GMM-based approach cannot perform spectral
conversion taking account of speaking rates because it assumes one to one frame matching between source and
target features. However, speaker characteristics may also appear in speaking rates. In order to perform dura-
tion conversion, we attach duration models to statistical models including time-sequence matching (DPGMM).
Since DPGMM can represent two different length sequences directly, the conversion of spectrum and duration can
be performed within an integrated framework. In the proposed technique, each mixture component of DPGMM
has different duration transformation functions, therefore durations are converted nonlinearly and dependently on
spectral information. In a subjective DMOS test, the proposed method is superior to the conventional method.
Key words Voice conversion, Duration conversion, GMM

spectral conversion frameworks is based on a Gaussian Mix-
ture Model (GMM) [2]. This method realizes the continu-
Voice conversion is a technique for converting a certain  ous mapping based on the soft clustering. A more accurate

1. Introduction

speaker’s voice into another speaker’s voice. It can mod- formulation of spectral conversion based on ML (Maximum
ify speech characteristics using conversion rules statistically ~ Likelihood) criterion has been presented [3]. The ML-based
extracted from a small amount of data[l]. One of typical conversion is a sophisticated technique because all processes
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in the algorithm are derived based on the single objective
function.

In the conventional GMM-based method, a GMM is
trained under an assumption that source and target feature
sequences have the same length, because a GMM is trained
using joint feature vectors which are references of mapping
rules, and the Dynamic Programming (DP) matching be-
tween source and target feature sequences is conducted prior
to the training of GMMs. Because of this, it cannot take
account of the correlation of duration between source and
target features. To overcome this problem, we apply statisti-
cal models including time-sequence matching (DPGMM) [4].
The likelihood function of this model can directly deal with
two different length sequences, in which a frame alignment
between two sequences is represented by discrete hidden vari-
ables. It can perform modeling of duration correlations be-
tween source and target features. In the proposed voice con-
version technique, we can convert a speaking rate nonlinearly
and dependently on spectral information by attaching dura-
tion models to each mixture of DPGMM.

The paper is organized as follows. Section 2 and 3 explain
the conventional voice conversion technique based on GMM
and DPGMM, respectively. Simultaneous conversion of du-
ration and spectrum is presented in Section 4 and experi-
mental results are reported in Section 5. Finally, conclusions

and future works are given in Section 6.
2. Spectral Conversion Based on GMM

To convert spectral feature sequences of a source speaker
to that of a target speaker, the joint probability of two
features are modeled by a GMM [3]. Let a vector O; =

2
owT, O?)T] be a joint feature vector of the source one

O and the target one O at time t, where -7 denotes
transposition of a vector. An alignment between two fea-
ture sequences is obtained by the Dynamic Programing (DP)
matching. In the GMM-based voice conversion, the joint fea-
ture vector sequence O = [OlT,OgT,--- ,OTT]T is mod-
eled by a GMM to learn the relation between source and
target features. The output probability of O given GMM X

is defined as follows:

T M
PN =]] [Z w.-N(ot;ui.zi)] (1)
t=1 Li=1
where
o S w12
K= ”:z) 1B = @y @2 ©)
®; =" D

and M means the number of mixtures, w; = P(i|) is
the mixture weight of the i-th component, p; and X; are
the mean vector and covariance matrix, respectively. These

model parameters are estimated via the Expectation Maxi-
mization (EM) algorithm.

2.1 Maximum Likelihood Spectral Conversion

In the ML spectral conversion, the optimal converted fea-

e
T T T
ture sequence O® = [0‘1’) , 09" ,....09 ] given a
.
T T T
source feature sequence O™ = [Oﬁ‘) ,ON ... .09

is obtained by maximizing the following conditional distri-
bution:

P(O(ﬂ) |O(l), A)
T
=) [P(m [0, ) [] PO |0, m., A)] 3)
m t=1

where m = [mi,mq, -+, --,mr] is a mixture index se-
quence. The conditional distribution can also be written as
GMM, and its output probability distribution is presented

as follows:

POP |0, m, =i,\) = N (0O; Ei(t), D) )

where
Ei(t) = p{® + ZP VBT (00 - pf) ®)
D; = 252'2) _ 252. 1)251.1)—1251,2) (6)

Since equation (3) includes latent variables, the optimal
sequence of O? is estimated via the EM algorithm. The
EM algorithm is an iterative method for approximating the
maximum likelihood estimation. It maximizes the expecta-
tion of the complete data log-likelihood so called Q-function
(auxiliary function):

Q(O(z), 0(2))
= [P(O(”,m 0D, A)1n P(O®,m |0, A)] )
m

Taking the derivative of the Q-function, the spectral se-
quence 0™ which maximizes the Q-function is given by

. — Nl
O = (D—l) DE ®)
where
DT = diag [D{l,Dz'l,u-,D;l] ©)
M
D;' =) @D (10)
i=1
.
D'E = [D-‘EIT,D"EzT,-'~,D“ETT] (11)
- M
D7E: = ) %(6)D; Ee(i) (12)
i=1
(i) = P(m; =1i| 0,0, X) (13)
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3. Spectral Conversion Based on DPGMM

3.1 Definition of Model Structure

In the DPGMM-based method [4], we define the likeli-
hood function P(O™,0® |\) including the structure of
sequence matching. The simultaneous optimization of the
DP matching and training of model parameters is per-
formed based on the ML criterion. The advantage of

the DPGMM is to directly represent two different length
T

sequences OV = [2(11),0(21),“-,0(;()1) and O® =
[00,00,---,0%,] . The likelihood function of obser-

vation sequences O = {O‘l), O(’)} is written as follows:

P(O[X) = Y [P(m|N)P(O®|m,X)

x P(a|m,\)P(0® |0, m,a,])] (14)

where m = [my, mg, - -, mp1)] is & mixture index sequence
and its element m,(:) means the mixture index of the obser-
vation O™ at time ). The variable a = [a1,02,"**,ap@]
represents the temporal matching between source and tar-
get feature sequences and a,z) € {1, e ,T“’} indicates the
frame number of source sequence O¥ which corresponds to
the t®-th frame of target sequence O®. Each element of
the complete data likelihood is defined as follows:

(1)
Pm|A) = [] Plmw (X (15)
(D=1
P(O(l)|m,)\)
(1)
— ), Q) (1)
- H N(Ot(l)al“mt(l)izm‘(l)) (16)
(D=1
(2)
Palm,2) = [[ Pl lo@_1ma_2)  (7)
t(2)=1
P(O®|0Y,m,a,))
7(2)
— @) . A AV ¥
= H N (Ot(2)’c'"ﬂ,(z) O%(2)’2"‘°¢(2)) (18)
t(2)=1
where
s = A1) @ T T
C;= n; C; ]’ot(l) = [ 1 Ot(l) ] (19)

The model parameters of DPGMM are summarized as fol-
lows:

o w = {w;|1<i< M} : the mixture weights of the
GMM which generate the source feature sequence O™,
where w; = P(m,u) = 4| ) is the probability of i-th mix-
ture.

¢ BM — {bﬁ”|1§i§M} : the output probabil-
ity distributions of source feature O, where b" =
P(O:H) |myay = 4,A) is the probability of source feature
vector 028) at 4-th mixture and which is assumed to be a

0(2)

Target feature
sequence
//a
Matching parameter
0(1) sequence
Original feature |
sequence

m
., Mixture index
sequence

Fig. 1 Model structure including time-sequence matching

Gaussian distribution: A (028);/1.?),2?)) where p{" and
E?) are the mean vector and covariance matrix, respectively.
e c= {cs.’) |1€£nEN } : the transition probabilities

of the sequence matching where cs,' ) indicates the probability
P(a,2) = ay2)_y + 1| ayz)_1,My2)_, =1%). This parameter
corresponds to the cost function in the DP matching.

e B® ={b|1<i< M}: the output distributions of

the target feature O, where b = P(0Q}, | 0}), m,) =
i,a,2) = tP) is the probability of the target feature vector
023) given the corresponding source feature vector O'()) at
i-th mixture. This conditional distribution is assumed to be
a Gaussian distribution: A (O:?;); CiOig) + ﬁi,fb,-) where
fi; and 3; are the mean vector and the covariance matrix,
respectively.
Using shorthand notation, the model is defined as A =
{w,c, B“’,B(’)}. Figurel shows the model structure in-
cluding time-sequence matching. The generative procedure
is summarized as follows:

(1) The mixture index sequence m is determined ac-
cording to the weight P(m | ).

(2) The source feature sequence O is generated from
Gaussian distribution P(O™ | m, A).

(3) The frame matching between O™ and O®@ is de-
termined according to P(a | ).
o®
ated according to the conditional Gaussian distribution

(4) The target feature sequence is gener-
P(O® | 0™, m,a,]) given the source feature sequence.
3.2 Training Algorithm
The parameters of DPGMM can be estimated via the EM
algorithm. The Q-function of DPGMM can be written as

QAN) = Y P(m,a|0%,0?,1)

m,a

xIn P(O®,0®,m,a|X) (20)

By maximizing the Q-function, the re-estimation formula

in the M-step are derived as follows:

_ 1 W (;
wi = T Z’Yta) (2)
t(1)

(21)

1
) _ ) (YO
P = <5 U 00R, (22)

()
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N; #2) ¢(1)
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& - (sz:&(t“wozz: o)
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-1
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$(2) (1)
222) = (2) ZZ'Y(” ,3)
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x (0%, - €:0%) (0%, - c'.o‘::) (26)

where T means the total number of frames of source fea-
ture sequences, and N and N{® are the occupancy counts
of i-th mixture which can be written as follows:

NP = Y0, MO = A 0,0

t(1) £(2) (1)

(27)

Notation v and ¢ denote the expectations with respect to
the posterior distribution over the hidden variables. These
expectations are computed in the E-step by the following
equations:

Yh @) = Plmyay =i]0P,09,3)
= Zp(m, a|0™,0® \)é(m,q),1)

m,a
1B E?,0) = Playw = t@]0%,09,x)
=Y P(m,a]0®,0%,x)
m,a

x8(myw ;)8(aya,tP)

(28)

(29)

€ () =

= ZP(m,a [OD, 02 x)
m,a
tM)5(aym), 1 +n)

%6(ay -y (30)

4(-) is the Kronecker delta function: 6(u,v) =1if u = v,
6(u,v) = 0 otherwise. If we compute expectations in the
exact E-step directly according to equation (28)—(30), we
need to take the summation over all the combinations of
m and a. Therefore the complexity of the E-step becomes
O(MTO)T("’)T(I)) and it is infeasible due to the number of
hidden variables. To overcome this problem, the variational
method is used for approximate ML estimation in probabilis-
tic graphical models with hidden variables [5].

3.3 Variational approximation

Variational methods [5] have been used for approximate
maximum likelihood estimation of probabilistic graphical
models. We present a structure approximation in which the

hidden variables representing mixture index sequences and

time sequence matching are decoupled. An arbitrary distri-
bution Q(m,a) over the hidden variables is introduced to
define a lower bound on the log-likelihood:

InP(O|A) = lnz Q(m,a P(g(:: Z)' A)
2 Y om0y XG T2 l)
= F(Q,A) (81)

where we have applied Jensen’s inequality.

3.4 ML-Based Spectral Conversion

In the conversion process, the converted feature sequence
O® can be obtained by maximizing a lower bound of the

likelihood. The optimal sequence is given as the following

equation:
) M -1
O = | X v e, e )5t
t(1)=1 i=1
M M
x| 30 3 4@ @se®,¢ME1C0Y), |(32)
(1) =] i=1

Although the DPGMM can represent different length se-
quences of source and target features, one to one frame
matching is assumed in the conversion process (Eq. (32)),
because the Markovian transition probability P(a|m,) is

insufficient to convert durations.

4. Simultaneous Conversion of Duration
and Spectrum

To convert a speaking rate, we define duration models
attached to each mixture of DPGMM. A duration of s-
th segment is represented by a joint duration vector d; =

T . . .
P(ayz_, =t a0, =t +0|0P,0?,X) [df,‘),dff’] which consists of source duration d{" and tar-

get duration d$®. The segment means a period in which
the same mixture component continues. Duration mod-
els are represented by 2-dimensional Gaussian distributions
N(ds |vi, ®;) with the mean vector v; and the covariance
matrix ®; and each component of these parameters are de-

fined as follows:
¢(1' 2)
(2, 2)

e PO
vi=| o | B=| Gy
<] )

Figure 2 shows an overview of training duration models and

(33)

the procedure is summarized as follows:

(1) Determine the mixture index sequence m and frame
matching @ so as to maximize the posterior probability
P(m,a|O0®W,0®,)).

(2) Generate duration vectors d;,8 = 1,---,8 from m
and a obtained in step 1.

(3) Estimate duration models for each mixture compo-

nent using the corresponding duration vectors.
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Fig. 2 Training of duration models

(Specirl conversion)

o®

Fig. 3 Duration conversion

The simultaneous conversion of duration and spectrum is
performed based on DPGMM with duration models. An
overview of duration conversion is shown in Figure 3 and the
procedure is summarized as follows:

(1) Determine the mixture index sequence 7 which
maximizes posterior probability P(m|O™,)) given an in-
put feature sequence.

(2) Extract source duration d® from the mixture index
sequence 71 and convert it into the target duration d® using

the following equation:

2,1
i = @ ¢ g0 _ o
=Y +¢(1.1)( Y )
1

(3) The matching sequence & is determined using dura-

(34

tion d» and d®. Frame matching within each segment is
determined at even intervals.

The voice conversion taking account of a speaking rate is
performed by converting spectrum based on the matching
sequence @ which are obtained by the above procedure. The
converted feature sequence is obtained as

T M -t

3 D A @) @w@, ) ET

t(1)=1 i=1

£ (2)
O =

M) M
Ry $-174 A
x| 3 Y R ()6, t0)ET E:08

(1 =y i=1

(35)

In the proposed method, each mixture component of
DPGMM has different transformation function of duration,
therefore durations are converted nonlinearly and depen-

dently on spectral information.
5. Experiments

5.1 Experimental conditions

Voice conversion experiments on the ATR Japanese speech
database were conducted. Two male speakers were selected
as a source and a target speaker (source:MTK target:MYT).
The target speaker has a more rapid speaking rate than the
source speaker. Ten sentences uttered by the both speakers
were used for training and 50 sentences were used for eval-
uation. The speech data were down-sampled from 20kHz to
16kHz, windowed at a 5-ms frame rate using a 25-ms Black-
man window, and parameterized into 24 mel-cepstral coeffi-
cients excepting the zero-th coefficients and their first order
derivative were used as the dynamic features. The number
of mixtures are four.

Figure 4 shows the comparison of spectrum for a Japanese
sentence “muzukashi?” which is not included in the training
data. The notation “GMM?” and “DPGMM?” indicate the
conventional methods based on GMM and DPGMM, respec-
tively. “DUR1” and “DUR2” represent the proposed meth-
ods with linear and nonlinear duration conversion, respec-
tively. The transition probabilities of the sequence match-
ing are assumed to be independent on the mixture index se-
quence in “DUR1” and “DUR2.” (That is P(a|m,A) =
P(a|).)
(Gaussian distribution) and it is equivalent to a special case

“DUR1” uses only one linear transformation

of “DUR2” in which the parameters of duration models are
shared among all mixture components. From Figure 4, it can
be seen that the speaking rate of the conventional methods
(“GMM” and “DPGMM?”) are similar to that of the source
speech. However, the converted spectrum of the proposed
methods (“DUR1” and “DURZ2”) are more rapid than that
of the source speech. Furthermore, although the speaking
rate of “DUR1” was converted by a constant ratio, “DUR2”
locally changed the speaking rate dependently on spectral
information.

5.2 The effectiveness of duration conversion

A DMOS (Differential Mean Opinion Score) test was per-
formed for evaluating the similarity between the target and
converted speech in speaker characteristics. The opinion
score was set to a 5-point scale.

Figure 5 shows the results of the DMOS test. The subjects
were 15 Japanese graduate students. Fifty sentences were
randomly chosen from the evaluation sentences. Comparing
the proposed methods with duration conversion (“DUR1”
and "DUR2”) and the conventional methods without du-
ration conversion (“GMM” and “DPGMM?”), the proposed
methods are superior to the conventional methods. This
means that the duration conversion is effective for improving
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(a) source speech

OOBNO
————

(f) target speech

Fig. 4 Comparison of spectrum for a phrase “muzukashii’

the similarity in the converted speech. Furthermore, compar-
ing “DUR1” and “DUR2,” “DUR2” could obtain a higher
score than “DURL.” It is confirmed that the nonlinear con-
version using DPGMM can accurately convert durations be-
cause of the dependency on spectrum information.

5.3 The effectiveness of mixture dependent tran-

sition probabilities

We also conducted the DMOS test for evaluating the effec-
tiveness of the transition probabilities of the sequence match-
ing which depends on the mixture index sequences. Twenty
sentence were used for the evaluation set, and the number
of listeners was 10. Figure 6 plots the result of the DMOS
test. “DUR2” is the same approach in the previous test
and it uses the mixture independent transition probability
(P(a|A)). “DURM” means the proposed method that uses
the mixture dependent transition probabilities (P(a |m, A)).
It can be seen from the figure that no significant difference
between “DUR2” and “DURM?” is observed. However, the
effectiveness of the duration conversion is shown similarly in
Figure 5.

6. Conclusion

This paper has proposed a simultaneous conversion
method of duration and spectrum based on statistical models
including time-sequence matching. The proposed technique

34 95% confidence intervals —
33
3.2

w31

g

3 3
29
28
2.7
26

DUR2

GMM  DPGMM  DURI
Fig. 5 Result of DMOS test for the comparing speaker similarity

between with and without duration conversion

33
95% confidence intervals —

3.2
3.1

26

GMM DPGMM DURM

DUR2

Fig. 6 Result of DMOS test for evaluating the effectiveness of
mixture dependent transision probabilities

converts a speaking rate dependently on spectral informa-
tion. In the experiments, it was confirmed that the proposed
method achieved a higher performance than the conventional
GMM-based approaches.

Simultaneous optimization of DPGMM and duration mod-
els will be a future work.
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